
SERVER-SIDE ACTIONSCRIPT
LANGUAGE REFERENCE FOR
ADOBE® FLASH® MEDIA
INTERACTIVE SERVER

© 2007 Adobe Systems Incorporated. All rights reserved.
Server-Side ActionScript Language Reference for Adobe® Flash® Media Interactive Server
If this guide is distributed with software that includes an end user agreement, this guide, as well as the software described in it, is furnished under license and may be used or
copied only in accordance with the terms of such license. Except as permitted by any such license, no part of this guide may be reproduced, stored in a retrieval system, or trans-
mitted, in any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written permission of Adobe Systems Incorporated. Please note that the
content in this guide is protected under copyright law even if it is not distributed with software that includes an end user license agreement.
The content of this guide is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by Adobe Systems Incorpo-
rated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in this guide.
Please remember that existing artwork or images that you may want to include in your project may be protected under copyright law. The unauthorized incorporation of such
material into your new work could be a violation of the rights of the copyright owner. Please be sure to obtain any permission required from the copyright owner.
Any references to company names in sample templates are for demonstration purposes only and are not intended to refer to any actual organization.
Adobe, the Adobe logo, ColdFusion, and Flash are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries. All
other trademarks are the property of their respective owners.
Portions include software under the following terms:

Sorenson™ Spark™ video compression and decompression technology licensed from Sorenson Media, Inc.

Licensee shall not use the MP3 compressed audio within the Software for real time broadcasting (terrestrial, satellite, cable or other media), or broadcasting via Internet or other
networks, such as but not limited to intranets, etc., or in pay-audio or audio on demand applications to any non-PC device (i.e., mobile phones or set-top boxes). Licensee
acknowledges that use of the Software for non-PC devices, as described herein, may require the payment of licensing royalties or other amounts to third parties who may hold
intellectual property rights related to the MP3 technology and that Adobe has not paid any royalties or other amounts on account of third party intellectual property rights for
such use. If Licensee requires an MP3 decoder for such non-PC use, Licensee is responsible for obtaining the necessary MP3 technology license.
Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA.
Notice to U.S. Government End Users. The Software and Documentation are “Commercial Items,” as that term is defined at 48 C.F.R. §2.101, consisting of “Commercial Computer
Software” and “Commercial Computer Software Documentation,” as such terms are used in 48 C.F.R. §12.212 or 48 C.F.R. §227.7202, as applicable. Consistent with 48 C.F.R.
§12.212 or 48 C.F.R. §§227.7202-1 through 227.7202-4, as applicable, the Commercial Computer Software and Commercial Computer Software Documentation are being
licensed to U.S. Government end users (a) only as Commercial Items and (b) with only those rights as are granted to all other end users pursuant to the terms and conditions
herein. Unpublished-rights reserved under the copyright laws of the United States. Adobe Systems Incorporated, 345 Park Avenue, San Jose, CA 95110-2704, USA. For U.S.
Government End Users, Adobe agrees to comply with all applicable equal opportunity laws including, if appropriate, the provisions of Executive Order 11246, as amended,
Section 402 of the Vietnam Era Veterans Readjustment Assistance Act of 1974 (38 USC 4212), and Section 503 of the Rehabilitation Act of 1973, as amended, and the regulations
at 41 CFR Parts 60-1 through 60-60, 60-250, and 60-741. The affirmative action clause and regulations contained in the preceding sentence shall be incorporated by reference.

iii

Contents

Server-Side ActionScript Language Reference . 1
Global functions . 1

Application class . 6

Client class . 30

File class . 45

LoadVars class . 58

Log class . 67

NetConnection class . 68

NetStream class . 74

SharedObject class . 79

SOAPCall class . 94

SOAPFault class . 95

Stream class . 96

WebService class . 111

XML class . 114

XMLSocket class . 146

XMLStreams class . 152

1

Server-Side ActionScript Language
Reference
Use Server-Side ActionScript to write server-side code for an Adobe Flash Media Interactive Server application. You
can use Server-Side ActionScript to control login procedures, control events, communicate with other servers, allow
and disallow users access to various server-side application resources, and let users update and share information.

Server-Side ActionScript is Adobe’s name for JavaScript 1.5. Flash Media Interactive Server has an embedded Java-
Script engine that compiles and executes server-side scripts. This Server-Side ActionScript Language Reference
documents the Flash Media Interactive Server host environment classes and functions. You can also use core Java-
Script classes, functions, statements, and operators. For more information, see the Core JavaScript 1.5 Reference at
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference. For more information about JavaScript, see
“About JavaScript” in the Mozilla Developer Center at http://developer.mozilla.org/en/docs/About_JavaScript.

Server-Side ActionScript is similar, but not identical, to ActionScript 1.0. Both languages are based on ECMAScript
(ECMA-262) edition 3 language specification. Server-Side ActionScript runs in the Mozilla SpiderMonkey engine
embedded in Flash Media Interactive Server. ActionScript 1.0 runs in AVM1 (ActionScript Virtual Machine 1) in
Adobe Flash Player. SpiderMonkey implemented the ECMAScript specification exactly and Flash Player AVM1 did
not. The biggest difference between Server-Side ActionScript and ActionScript 1.0 is that Server-Side ActionScript
is case-sensitive.

Global functions
The following functions are available anywhere in a server-side script:

clearInterval()
clearInterval(intervalID)

Stops a call to the setInterval() method.

Availability
Flash Communication Server 1

Signature Description

clearInterval() Stops a call to the setInterval() method.

getGlobal() Provides access to the global object from the secure.asc file while the file is loading.

load() Loads a Server-Side ActionScript file (ASC) or JavaScript file (JS) into the main.asc file.

protectObject() Protects the methods of an object from application code.

setAttributes() Prevents certain methods and properties from being enumerated, writable, and deletable.

setInterval() Calls a function or method at a specified time interval until the clearInterval() method is called.

trace() Evaluates an expression and displays the value.

http://developer.mozilla.org/en/docs/About_JavaScript
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

2

Parameters
intervalID An identifier that contains the value returned by a previous call to the setInterval() method.

Example
The following example creates a function named callback() and passes it to the setInterval() method, which
is called every 1000 milliseconds and outputs the message “interval called.” The setInterval() method
returns a number that is assigned to the intervalID variable. The identifier lets you cancel a specific
setInterval() call. In the last line of code, the intervalID variable is passed to the clearInterval() method
to cancel the setInterval() call.

function callback(){trace("interval called");}
var intervalID;
intervalID = setInterval(callback, 1000);
// sometime later
clearInterval(intervalID);

getGlobal()
getGlobal()

Provides access to the global object from the secure.asc file while the file is loading. Use the getGlobal() function
to create protected system calls.

Availability
Flash Media Server 2

Details
Flash Media Interactive Server has two script execution modes: secure and normal. In secure mode, only the
secure.asc file (if it exists) is loaded and evaluated—no other application scripts are loaded. The getGlobal() and
protectObject() functions are available only in secure mode. These functions are very powerful because they
provide complete access to the script execution environment and let you create system objects. Once the secure.asc
file is loaded, the server switches to normal script execution mode until the application is unloaded.

To prevent inadvertent access to the global object, always hold its reference in a temporary variable (declared by
var); do not hold its reference in a member variable or a global variable.

Example
The following code gets a reference to the global object:

var global = getGlobal();

load()
load(filename)

Loads a Server-Side ActionScript file (ASC) or JavaScript file (JS) into the main.asc file. Call this function to load
ActionScript libraries. The loaded file is compiled and executed after the main.asc file is successfully loaded,
compiled, and executed, but before application.onAppStart() is called. The path of the specified file is resolved
relative to the main.asc file.

Availability
Flash Communication Server 1

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

3

Parameters
filename A string indicating the relative path to a script file from the main.asc file.

Example
The following example loads the myLoadedFile.asc file:

load("myLoadedFile.asc");

protectObject()
protectObject(object)

Protects the methods of an object from application code. Application code cannot access or inspect the methods
directly. You can use this function only in the secure.asc file.

Availability
Flash Media Server 2

Parameters
object An object to protect.

Returns
An Object.

Details
After an object is protected, don’t reference it in global variables or make it a member of an accessible object. The
object returned by protectObject() dispatches all method invocations to the underlying object but blocks access
to member data. As a result, you can’t enumerate or modify members directly. The protected object keeps an
outstanding reference to the underlying object, which ensures that the object is valid. The protected object follows
normal reference rules and exists while it is referred to.

Flash Media Interactive Server has two script execution modes: secure and normal. In secure mode, only the
secure.asc file (if it exists) is loaded and evaluated—no other application scripts are loaded. The getGlobal() and
protectObject() functions are available only in secure mode. These functions are very powerful because they
provide complete access to the script execution environment and let you create system objects. Once the secure.asc
file is loaded, the server switches to normal script execution mode until the application is unloaded.

For more information, see Adobe Flash Media Server Developer Guide.

Example
After secure.asc is executed, calls to load() are directed through the user-defined system call, as shown in the
following example:

var sysobj = {};
sysobj._load = load; // Hide the load function
load = null; // Make it unavailable unpriviliged code.
sysobj.load = function(fname){

// User-defined code to validate/modify fname
return this._load(fname);

}
// Grab the global object.
var global = getGlobal();

// Now protect sysobj and make it available as
// “system” globally. Also, set its attributes

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

4

// so that it is read-only and not deletable.

global["system"] = protectObject(sysobj);

setAttributes(global, "system", false, true, true);

// Now add a global load() function for compatibility.
// Make it read-only and nondeletable.

global["load"] = function(path){
return system.load(path);

}

setAttributes(global, "load", false, true, true);

See also
LoadVars class

setAttributes()
setAttributes(object, propName, enumerable, readonly, permanent)

Prevents certain methods and properties from being enumerated, writable, and deletable. In a server-side script, all
properties in an object are enumerable, writable, and deletable by default. Call setAttributes() to change the
default attributes of a property or to define constants.

Availability
Flash Media Server 2

Parameters
object An Object.

propName A string indicating the name of the property in the object parameter. Setting attributes on nonexistent
properties has no effect.

enumerable One of the following values: true, false, or null. Makes a property enumerable if true or nonenu-
merable if false; a null value leaves this attribute unchanged. Nonenumerable properties are hidden from enumer-
ations (for var i in obj).

readonly One of the following values: true, false, or null. Makes a property read-only if true or writable if
false; a null value leaves this attribute unchanged. Any attempt to assign a new value is ignored. Typically, you
assign a value to a property while the property is writable and then make the property read-only.

permanent One of the following values: true, false, or null. Makes a property permanent (nondeletable) if
true or deletable if false; a null value leaves this attribute unchanged. Any attempt to delete a permanent property
(by calling delete obj.prop) is ignored.

Example
The following code prevents the resolve() method from appearing in enumerations:

Object.prototype.__resolve = function(methodName){ ... };
setAttributes(Object.prototype, "__resolve", false, null, null);

The following example creates three constants on a Constants object and makes them permanent and read-only:

Constants.KILO = 1000;
setAttributes(Constants, "KILO", null, true, true);
Constants.MEGA = 1000*Constants.KILO;

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

5

setAttributes(Constants, "MEGA", null, true, true);
Constants.GIGA = 1000*Constants.MEGA; setAttributes(Constants, "GIGA", null, true, true);

setInterval()
setInterval(function, interval[, p1, ..., pN])
setInterval(object.method, interval[, p1, ..., pN])

Calls a function or method at a specified time interval until the clearInterval() method is called. This method
allows a server-side script to run a routine. The setInterval() method returns a unique ID that you can pass to
the clearInterval() method to stop the routine.

Note: Standard JavaScript supports an additional usage for the setInterval() method,
setInterval(stringToEvaluate, timeInterval), which is not supported by Server-Side ActionScript.

Availability
Flash Communication Server 1

Parameters
function A Function object.

object.method A method to call on object.

interval A number indicating the time in milliseconds between calls to function.

p1, ..., pN Optional parameters passed to function.

Returns
An integer that provides a unique ID for this call. If the interval is not set, returns -1.

Example
The following example uses an anonymous function to send the message “interval called” to the server log
every second:

setInterval(function(){trace("interval called");}, 1000);

The following example also uses an anonymous function to send the message “interval called” to the server log every
second, but it passes the message to the function as a parameter:

setInterval(function(s){trace(s);}, 1000, "interval called");

The following example uses a named function, callback1(), to send the message “interval called” to the
server log:

function callback1(){trace("interval called"); }
setInterval(callback1, 1000);

The following example also uses a named function, callback2(), to send the message “interval called” to the
server log, but it passes the message to the function as a parameter:

function callback2(s){
trace(s);

}
setInterval(callback2, 1000, "interval called");

The following example uses the second syntax:

var a = new Object();
a.displaying=displaying;
setInterval(a.displaying, 3000);

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

6

displaying = function(){
trace("Hello World");

}

The previous example calls the displaying() method every 3 seconds and sends the message "Hello World" to
the server log.

See also
clearInterval()

trace()
trace(expression)

Evaluates an expression and displays the value. You can use the trace() function to debug a script, to record
programming notes, or to display messages while testing a file. The trace() function is similar to the alert()
function in JavaScript.

The expression appears in the Live Log panel of the Administration Console; it is also published to the appli-
cation.xx.log file located in a subdirectory of the RootInstall\logs folder. For example, if an application is called
myVideoApp, the application log for the default application instance would be located here: RootIn-
stall\logs_defaultVHost_\myVideoApp_definst_.

Availability
Flash Communication Server 1

Parameters
expression Any valid expression. The values in expression are converted to strings if possible.

Application class
Every instance of a Flash Media Server application has an Application object, which is a single instance of the Appli-
cation class. You don’t need to use a constructor function to create an Application object; it is created automatically
when an application is instantiated by the server.

Use the Application object to accept and reject client connection attempts, to register and unregister classes and
proxies, and to manage the life cycle of an application. The Application object has callback functions that are invoked
when an application starts and stops and when a client connects and disconnects.

For more information about the life cycle of an application, see Adobe Flash Media Server Developer Guide.

Availability
Flash Communication Server 1

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

7

Property summary

Method summary

Event handler summary

Property Description

application.allowDebug A boolean value that lets administrators access an application with the Administration
API approveDebugSession() method (true) or not (false).

application.clients Read-only; an Array object containing a list of all the clients connected to an application.

application.config Provides access to properties of the ApplicationObject element in the Applica-
tion.xml configuration file.

application.hostname Read-only; the host name of the server for default virtual hosts; the virtual host name for
all other virtual hosts.

application.name Read-only; the name of the application instance.

application.server Read-only; the platform and version of the server.

Method Description

application.acceptConnection() Accepts a connection call from a client to the server.

application.broadcastMsg() Broadcasts a message to all clients connected to an application instance.

application.clearSharedObjects() Deletes persistent shared objects files (FSO files) specified by the soPath parameter and
clears all properties from active shared objects (persistent and nonpersistent).

application.clearStreams() Clears recorded streams files associated with an application instance.

application.disconnect() Terminates a client connection to the application.

application.gc() Invokes the garbage collector to reclaim any unused resources for this application
instance.

application.getStats() Returns statistics about an application.

application.redirectConnection() Rejects a connection and provides a redirect URL.

application.registerClass() Registers a constructor function that is used when deserializing an object of a certain
class type.

application.registerProxy() Maps a method call to another function.

application.rejectConnection() Rejects the connection call from a client to the server.

application.shutdown() Unloads the application instance.

Event handler Description

application.onAppStart() Invoked when the server loads an application instance.

application.onAppStop() Invoked when the server is about to unload an application instance.

application.onConnect() Invoked when NetConnection.connect() is called from the client.

application.onConnectAccept() Invoked when a client successfully connects to an application; for use with version 2
components only.

application.onConnectReject() Invoked when a connection is rejected in an application that contains components.

application.onDisconnect() Invoked when a client disconnects from an application.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

8

application.acceptConnection()
application.acceptConnection(clientObj)

Accepts a connection call from a client to the server.

Availability
Flash Communication Server 1

Parameters
clientObj A Client object; a client to accept.

Details
When NetConnection.connect() is called from the client side, it passes a Client object to
application.onConnect() on the server. Call application.acceptConnection() in an
application.onConnect() event handler to accept a connection from a client. When this method is called,
NetConnection.onStatus() is invoked on the client with the info.code property set to
"NetConnection.Connect.Success".

You can use the application.acceptConnection() method outside an application.onConnect() event
handler to accept a client connection that had been placed in a pending state (for example, to verify a user name and
password).

When you call this method, NetConnection.onStatus() is invoked on the client with the info.code property set
to "NetConnection.Connect.Success". For more information, see the NetStatusEvent.info property in the
ActionScript 3.0 Language and Components Reference or the NetConnection.onStatus() entry in the Adobe Flash
Media Server ActionScript 2.0 Language Reference.

Note: When you use version 2 components, the last line (in order of execution) of the onConnect() handler should be
either application.acceptConnection() or application.rejectConnection() (unless you’re leaving the
application in a pending state). Also, any logic that follows acceptConnection() or rejectConnection() must be
placed in the application.onConnectAccept() and application.onConnectReject() handlers, or it will be
ignored.

Example
The following server-side code accepts a client connection and traces the client ID:

application.onConnect = function(client){
// Accept the connection.

 application.acceptConnection(client);
trace("connect: " + client.id);

};

Note: This example shows code from an application that does not use components.

application.onPublish() Invoked when a client publishes a stream to an application.

application.onStatus() Invoked when the server encounters an error while processing a message that was
targeted at this application instance.

application.onUnpublish() Invoked when a client stops publishing a stream to an application.

Event handler Description

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

9

application.allowDebug
application.allowDebug

A boolean value that lets administrators access an application with the Administration API
approveDebugSession() method (true) or not (false). A debug connection lets administrators view information
about shared objects and streams in the Administration Console.

The default value for this property is false and is set in the Application.xml file:

<Application>
...
<Debug>

<AllowDebugDefault>false</AllowDebugDefault>
</Debug>
...

</Application>

Setting application.allowDebug to true in a server-side script overrides the value in the Application.xml file.

Availability
Flash Media Server 2

application.broadcastMsg()
application.broadcastMsg(cmd [, p1,..., pN])

Broadcasts a message to all clients connected to an application instance. To handle the message, the client must
define a handler on the NetConnection object with the same name as the cmd parameter.

Availability
Flash Media Server 2

Parameters
cmd A string; a message to broadcast. To handle the message, define a handler with the same name as cmd on the
client-side NetConnection object.

p1,..., pN A string; additional messages to broadcast.

Example
The following server-side code sends a message to the client:

application.broadcastMsg("testMessage", "Hello World");

The following client-side code catches the message and outputs “Hello World”:

nc = new NetConnection();
nc.testMessage = function(msg){

trace(msg);
};

application.clearSharedObjects()
application.clearSharedObjects(soPath)

Deletes persistent shared objects files (FSO files) specified by the soPath parameter and clears all properties from
active shared objects (persistent and nonpersistent). Even if you have deleted all the properties from a persistent
shared object, unless you call clearSharedObjects(), the FSO file still exists on the server.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

10

Availability
Flash Communication Server 1

Parameters
soPath A string indicating the Uniform Resource Identifier (URI) of a shared object.

The soPath parameter specifies the name of a shared object, which can include a slash (/) as a delimiter between
directories in the path. The last element in the path can contain wildcard patterns (for example, a question mark [?]
and an asterisk [*]) or a shared object name. The application.clearSharedObjects() method traverses the
shared object hierarchy along the specified path and clears all the shared objects. Specifying a slash (/) clears all the
shared objects that are associated with an application instance.

If soPath matches a shared object that is currently active, all its properties are deleted, and a clear event is sent to
all subscribers of the shared object. If it is a persistent shared object, the persistent store is also cleared.

The following values are possible for the soPath parameter:

• / clears all local and persistent shared objects associated with the instance.

• /foo/bar clears the shared object /foo/bar; if bar is a directory name, no shared objects are deleted.

• /foo/bar/* clears all shared objects stored under the instance directory /foo/bar. If no persistent shared objects
are in use within this namespace, the bar directory is also deleted.

• /foo/bar/XX?? clears all shared objects that begin with XX, followed by any two characters. If a directory name
matches this specification, all the shared objects within this directory are cleared.

Returns
A boolean value of true if the shared object at the specified path was deleted; otherwise, false. If wildcard
characters are used to delete multiple files, the method returns true only if all the shared objects that match the
wildcard pattern were successfully deleted; otherwise, it returns false.

Example
The following example clears all the shared objects for an instance:

function onApplicationStop(){
application.clearSharedObjects("/");

}

application.clearStreams()
application.clearStreams(streamPath)

Clears recorded streams files associated with an application instance. You can use this method to clear a single
stream, all streams associated with the application instance, just those streams in a specific subdirectory of the appli-
cation instance, or just those streams whose names match a specified wildcard pattern.

If the clearStreams() method is invoked on a stream that is currently recording, the recorded file is set to length
0 (cleared), and the internal cached data is also cleared.

A call to application.clearStreams() invokes the Stream.onStatus() handler and passes it an information
object that contains information about the success or failure of the call.

Note: You can also use the Administration API removeApp() method to delete all the resources for a single application
instance.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

11

Availability
Flash Communication Server 1

Parameters
streamPath A string indicating the Uniform Resource Identifier (URI) of a stream.

The streamPath parameter specifies the location and name of a stream relative to the directory of the application
instance. You can include a slash (/) as a delimiter between directories in the path. The last element in the path can
contain wildcard patterns (for example, a question mark [?] and an asterisk [*]) or a stream name. The
clearStreams() method traverses the stream hierarchy along the specified path and clears all the recorded streams
that match the given wildcard pattern. Specifying a slash clears all the streams that are associated with an application
instance.

To clear FLV, MP4, or MP3 files, precede the stream path with flv:, mp4:, or mp3:. When you specify flv: or mp3:
you don’t have to specify a file extension; .flv and .mp3 are implied. However, when you call
application.clearStreams("mp4:foo"), the server deletes any file with the name “foo” in an mp4 container; for
example, foo.mp4, foo.mov, and foo.f4v. To delete a specific file, pass the file extension in the call; for example,
application.clearStreams("mp4:foo.f4v").

Note: If you don't precede the stream path with a file type, only FLV files are deleted.

The following examples show some possible values for the streamPath parameter:

• flv:/ clears all FLV streams associated with the application instance.

• mp3:/ clears all MP3 files associated with the application instance.

• mp4:/ clears all MP4 streams associated with the application instance (for example, foo.mp4, foo.mov, and so
on).

• mp4:foo.mp4 clears the foo.mp4 file.

• mp4:foo.mov clears the foo.mov file.

• mp3:/mozart/requiem clears the MP3 file named requiem.mp3 from the application instance’s /mozart subdi-
rectory.

• mp3:/mozart/* clears all MP3 file from the application instance’s /mozart subdirectory.

• /report clears the report.flv stream file from the application instance directory.

• /presentations/intro clears the recorded intro.flv stream file from the application instance’s /presentations
subdirectory; if intro is a directory name, no streams are deleted.

• /presentations/* clears all FLV files from the application instance’s /presentations subdirectory. The /presen-
tation subdirectory is also deleted if no streams are used in this namespace.

• /presentations/report?? clears all FLV files that begin with “report,” followed by any two characters. If there
are directories within the given directory listing, the directories are cleared of any streams that match report??.

Returns
A boolean value of true if the stream at the specified path was deleted; otherwise, false. If wildcard characters are
used to clear multiple stream files, the method returns true only if all the streams that match the wildcard pattern
were successfully deleted; otherwise, it returns false.

Example
The following example clears all recorded streams:

function onApplicationStop(){

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

12

application.clearStreams("/");
}

The following example clears all MP3 files from the application instance’s /disco subdirectory:

function onApplicationStop(){
application.clearStreams("mp3:/disco/*");

}

application.clients
application.clients

Read-only; an Array object containing a list of all the clients connected to an application. Each element in the array
is a reference to the Client object; use the application.clients.length property to determine the number of
users connected to an application.

Do not use the index value of the clients array to identify users between calls, because the array is compacted when
users disconnect and the slots are reused by other Client objects.

Availability
Flash Communication Server 1

Example
The following example uses a for loop to iterate through each element in the application.clients array and calls
the serverUpdate() method on each client:

for (i = 0; i < application.clients.length; i++){
application.clients[i].call("serverUpdate");

}

application.config
application.config

Provides access to properties of the ApplicationObject element in the Application.xml configuration file. To
access properties that you set in the configuration file, use the application.config property. For example, to set
the value of the password element, use the code application.config.password.

For more information, see Adobe Flash Media Server Configuration and Administration Guide.

Availability
Flash Media Server 2

Example
Use this sample section from an Application.xml file for this example:

<Application>
<JSEngine>

 <ApplicationObject>
 <config>

<user_name>jdoe</user_name>
<dept_name>engineering</dept_name>

</config>
 </ApplicationObject>

</JSEngine>
</Application>

The following lines of code access the user_name and dept_name properties:

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

13

trace("I am " + application.config.user_name + " and I work in the " +
application.config.dept_name + " department.");

trace("I am " + application.config["user_name"] + " and I work in the " +
application.config["dept_name"] + " department.");

The following code is sent to the application log file and the Administration Console:

I am jdoe and I work in the engineering department.

application.disconnect()
application.disconnect(clientObj)

Terminates a client connection to the application. When this method is called, NetConnection.onStatus() is
invoked on the client with info.code set to "NetConnection.Connect.Closed". The
application.onDisconnect() handler is also invoked.

Availability
Flash Communication Server 1

Parameters
clientObj A Client object indicating the client to disconnect. The object must be a Client object from the
application.clients array.

Returns
A boolean value of true if the disconnection was successful; otherwise, false.

Example
The following example calls application.disconnect() to disconnect all users from an application instance:

function disconnectAll(){
for (i=0; i < application.clients.length; i++){

application.disconnect(application.clients[i]);
}

}

application.gc()
application.gc()

Invokes the garbage collector to reclaim any unused resources for this application instance.

Availability
Flash Media Server 2

application.getStats()
application.getStats()

Returns statistics about an application.

Availability
Flash Communication Server 1

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

14

Returns
An Object whose properties contain statistics about the application instance. The following table describes the
properties:

Example
The following example outputs application statistics to the Live Log panel in the Administration Console:

function testStats(){
var stats = application.getStats();
for(var prop in stats){

 trace("stats." + prop + " = " + stats[prop]);
}

}

application.onConnect = function(client){
this.acceptConnection(client);
testStats();

};

application.hostname
application.hostname

Read-only; the host name of the server for default virtual hosts; the virtual host name for all other virtual hosts.

If an application is running on the default virtual host, and if a value is set in the ServerDomain element in the
Server.xml configuration file, the application.hostname property contains the value set in the ServerDomain
element. If a value has not been set in the ServerDomain element, the property is undefined.

If an application is running on any virtual host other than the default, the application.hostname property
contains the name of the virtual host.

Availability
Flash Communication Server 1.5

application.name
application.name

Read-only; the name of the application instance.

Property Description

bw_in Total number of kilobytes received.

bw_out Total number of kilobytes sent.

bytes_in Total number of bytes sent.

bytes_out Total number of bytes received.

msg_in Total number of Real-Time Messaging Protocol (RTMP) messages sent.

msg_out Total number of RTMP messages received.

msg_dropped Total number of RTMP messages dropped.

total_connects Total number of clients connected to an application instance.

total_disconnects Total number of clients who have disconnected from an application instance.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

15

Availability
Flash Communication Server 1

Example
The following example checks the name property against a specific string before it executes some code:

if (application.name == "videomail/work"){
// Insert code here.

}

application.onAppStart()
application.onAppStart = function (){}

Invoked when the server first loads the application instance. Use this handler to initialize an application state. The
onAppStart() event is invoked only once during the lifetime of an application instance.

Availability
Flash Communication Server 1

Example
application.onAppStart = function (){

trace ("*** sample_guestbook application start");

// Create a reference to a persistent shared object.
application.entries_so = SharedObject.get("entries_so", true);

// Prevent clients from updating the shared object.
application.entries_so.lock();

// Get the number of entries saved in the shared object
// and save it in application.lastEntry.
var maxprop = 0;
var soProperties = application.entries_so.getPropertyNames();
trace("soProperties:" + soProperties);
if (soProperties == null) {

application.lastEntry = 0;
} else {

for (var prop in soProperties) {
maxprop = Math.max (parseInt(prop), maxprop);
trace("maxprop " + maxprop);

}
application.lastEntry = maxprop+1;

}
// Allow clients to update the shared object.
application.entries_so.unlock();
trace("*** onAppStart called.");

};

application.onAppStop()
application.onAppStop = function (info){}

Invoked when the server is about to unload an application instance. You can use onAppStop() to flush the appli-
cation state or to prevent the application from being unloaded.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

16

Define a function that is executed when the event handler is invoked. If the function returns true, the application is
unloaded. If the function returns false, the application is not unloaded. If you don’t define a function for this event
handler, or if the return value is not a boolean value, the application is unloaded when the event is invoked.

The Flash Media Server application passes an information object to the application.onAppStop() event. You can
use Server-Side ActionScript to look at this information object to decide what to do in the function you define. You
can also use the application.onAppStop() event to notify users before shutdown.

If you use the Administration Console or the Server Administration API to unload a Flash Media Server application,
application.onAppStop() is not invoked. Therefore you cannot use application.onAppStop() to tell users
that the application is exiting.

Availability
Flash Communication Server 1

Parameters
info An Object, called an information object, with properties that explain why the application is about to stop
running. The information object has a code property and a level property.

Returns
The value returned by the function you define, if any, or null. To unload the application, return true or any non-
false value. To refuse to unload the application, return false.

Example
The following example flushes the entries_so shared object when the application stops:

application.onAppStop = function (info){
trace("*** onAppStop called.");
if (info==”Application.Shutdown”){

application.entries_so.flush();
}

}

application.onConnect()
application.onConnect = function (clientObj [, p1, ..., pN]){}

Invoked when NetConnection.connect() is called from the client. This handler is passed a Client object repre-
senting the connecting client. Use the Client object to perform actions on the client in the handler. For example, use
this function to accept, reject, or redirect a client connection, perform authentication, define methods on the Client
object to be called remotely from NetConnection.call(), and set the Client.readAccess and Client.write-
Access properties to determine client access rights to server-side objects.

When performing authentication, all of the information required for authentication should be sent from the
NetConnection.connect() method to the onConnect() handler as parameters (p1..., pN).

If you don’t define an onConnect() handler, connections are accepted by default.

Code property Level property Description

Application.Shutdown status The application instance is about to shut down.

Application.GC status The application instance is about to be destroyed by the server.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

17

If there are several simultaneous connection requests for an application, the server serializes the requests so that only
one application.onConnect() handler is executed at a time. It’s a good idea to write code for the
application.onConnect() function that is executed quickly to prevent a long connection time for clients.

Note: When you are using the version 2 component framework (that is, when you are loading the components.asc file
in your server-side script file), you must use the application.onConnectAccept() method to accept client connec-
tions.

Availability
Flash Communication Server 1

Parameters
clientObj A Client object. This object contains information about the client that is connecting to the application.

p1 ..., pN Optional parameters passed to the application.onConnect() handler from the client-side
NetConnection.connect() method when a client connects to the application.

Returns
A boolean value; true causes the server to accept the connection; false causes the server to reject the connection.

When true is returned, NetConnection.onStatus() is invoked on the client with info.code set to
"NetConnection.Connect.Success". When false is returned, NetConnection.onStatus() is invoked on the
client with info.code set to "NetConnection.Connect.Rejected".

If null or no value is returned, the server puts the client in a pending state and the client can’t receive or send
messages. If the client is put in a pending state, you must call application.acceptConnection() or
application.rejectConnection() at a later time to accept or reject the connection. For example, you can
perform external authentication by making a NetConnection call in your application.onConnect() event
handler to an application server and having the reply handler call application.acceptConnection() or
application.rejectConnection(), depending on the information received by the reply handler.

You can also call application.acceptConnection() or application.rejectConnection() in the
application.onConnect() event handler. If you do, any value returned by the function is ignored.

Note: Returning 1 or 0 is not the same as returning true or false. The values 1 and 0 are treated the same as any other
integers and do not accept or reject a connection.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

18

How to use application.onConnect() to accept, reject, or put a client in a pending state.
A. Client-side ActionScript B. Server-Side ActionScript

Example
The following examples show three ways to accept or reject a connection in the onConnect() handler:

(Usage 1)
application.onConnect = function (clientObj [, p1, ..., pN]){

// Insert code here to call methods that do authentication.
// Returning null puts the client in a pending state.
return null;

};
(Usage 2)
application.onConnect = function (clientObj [, p1, ..., pN]){

// Insert code here to call methods that do authentication.
// The following code accepts the connection:
application.acceptConnection(clientObj);

};
(Usage 3)
application.onConnect = function (clientObj [, p1, ..., pN])
{

// Insert code here to call methods that do authentication.
// The following code accepts the connection by returning true:
return true;

};

The following example verifies that the user has sent the password “XXXX”. If the password is sent, the user’s access
rights are modified and the user can complete the connection. In this case, the user can create or write to streams
and shared objects in the user’s own directory and can read or view any shared object or stream in this application
instance.

// This code should be placed in the global scope.

application.onConnect = function (newClient, userName, password){
// Do all the application-specific connect logic.
if (password == "XXXX"){

NetConnection.onStatus(info)
info.code == NetConnection.Connect.Rejected

NetConnection.connect()

NetConnection.onStatus(info)
info.code == NetConnection.Connect.Success

application.onConnect(clientObject)

return true
or call

application.acceptConnection()

return false
or call

 application.rejectConnection()

return null
or don’t return a value

places application in a pending state

A B

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

19

newClient.writeAccess = "/" + userName;
this.acceptConnection(newClient);

} else {
var err = new Object();
err.message = "Invalid password";
this.rejectConnection(newClient, err);

}
};

If the password is incorrect, the user is rejected and an information object with a message property set to “Invalid
password” is returned to the client side. The object is assigned to infoObject.application. To access the
message property, use the following code on the client side:

ClientCom.onStatus = function (info.application.message){
trace(info.application.message);
// Prints "Invalid password"
// in the Output panel on the client side.

};

application.onConnectAccept()
application.onConnectAccept = function (clientObj [,p1, ..., pN]){}

Invoked when a client successfully connects to an application; for use with version 2 components only. Use
onConnectAccept() to handle the result of an accepted connection in an application that contains components.

If you don’t use the version 2 components framework (ActionScript 2.0 components), you can execute code in the
application.onConnect() handler after accepting or rejecting the connection. When you use the components
framework, however, any code that you want to execute after the connection is accepted or rejected must be placed
in the application.onConnectAccept() and application.onConnectReject() event handlers. This archi-
tecture allows all of the components to decide whether a connection is accepted or rejected.

Availability
Flash Media Server (with version 2 media components only).

Parameters
clientObj A Client object; the client connecting to the application.

p1, ..., pN Optional parameters passed to the application.onConnectAccept() method. These parameters
are passed from the client-side NetConnection.connect() method when a client connects to the application; they
can be any ActionScript data type.

Example
The following example is client-side code:

nc = new NetConnection();
nc.connect("rtmp:/test","jlopes");

nc.onStatus = function(info) {
trace(info.code);

};

nc.doSomething = function(){
trace("doSomething called!");

}

The following example is server-side code:

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

20

// When using components, always load components.asc.
load("components.asc");

application.onConnect = function(client, username){
trace("onConnect called");

 gFrameworkFC.getClientGlobals(client).username = username;
if (username == "hacker") {

application.rejectConnection(client);
}
else {

application.acceptConnection(client);
}

}

// Code is in onConnectAccept and onConnectReject statements
// because components are used.
application.onConnectAccept = function(client, username){

trace("Connection accepted for "+username);
client.call("doSomething",null);

}

application.onConnectReject = function(client, username){
trace("Connection rejected for "+username);

}

application.onConnectReject()
application.onConnectReject = function (clientObj [,p1, ..., pN]){}

Invoked when a connection is rejected in an application that contains components.

If you don’t use the version 2 components framework, you can execute code in the application.onConnect()
handler after accepting or rejecting a connection. When you use the components framework, however, any code that
you want to execute after the connection is accepted or rejected must be placed in the
application.onConnectAccept() and application.onConnectReject() framework event handlers. This
architecture allows all of the components to decide whether a connection is accepted or rejected.

Availability
Flash Media Server (with version 2 components only)

Parameters
clientObj A Client object; the client connecting to the application.

p1, ..., pN Optional parameters passed to the application.onConnectReject() handler. These parameters
are passed from the client-side NetConnection.connect() method when a client connects to the application.

Example
The following example is client-side code that you can use for an application:

nc = new NetConnection();
nc.connect("rtmp:/test","jlopes");

nc.onStatus = function(info) {
trace(info.code);

};

nc.doSomething = function(){
trace("doSomething called!");

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

21

}

The following example is server-side code that you can include in the main.asc file:

// When using components, always load components.asc.
load("components.asc");

application.onConnect = function(client, username){
trace("onConnect called");

 gFrameworkFC.getClientGlobals(client).username = username;
if (username == "hacker") {

application.rejectConnection(client);
}
else {

application.acceptConnection(client);
}

}

application.onConnectAccept = function(client, username){
trace("Connection accepted for "+username);
client.call("doSomething",null);

}

application.onConnectReject = function(client, username){
trace("Connection rejected for "+username);

}

application.onDisconnect()
application.onDisconnect = function (clientObj){}

Invoked when a client disconnects from an application. Use this event handler to flush any client state information
or to notify other users that a user is leaving the application. This handler is optional.

Note: After a client has disconnected from an application, you cannot use this method to send data back to that discon-
nected client.

Availability
Flash Communication Server 1

Parameters
clientObj A Client object; a client disconnecting from the application.

Returns
Server ignores any return value.

Example
The following example uses an anonymous function and assigns it to the application.onDisconnect() event
handler:

// This code should be placed in the global scope.
application.onDisconnect = function (client){

// Do all the client-specific disconnect logic.
// Insert code here.
trace("user disconnected");

};

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

22

application.onPublish()
application.onPublish = function (clientObj, streamObj){}

Invoked when a client publishes a stream to an application. Use this event handler to send traffic to other servers
when you’re building a large-scale live broadcasting application; this is called multipoint publishing. For example, you
can support subscribers in multiple geographic locations by sending traffic from the origin server (Server A) in one
city to two origin servers in two different cities (Server B and Server C). The following is the workflow for such a
scenario:

1 A client publisher connects to Server A and starts publishing.

2 Server A receives notifications from the event handler application.onPublish() in a server-side script.

3 Inside the onPublish() handler, create two NetStream objects to Server B and Server C.

4 Call the NetStream.publish() method to redirect the publishing data from Server A to Server B and Server C.

5 Subscribers connecting to Server B and Server C get the same live stream.

In this example, the publishing client connects and publishes only to Server A. The rest of the data flow is handled
by logic in the server-side script.

Note: You cannot change Client object properties in this handler.

Availability
Flash Media Interactive Server 3 and Flash Media Development Server 3

Parameters
clientObj A Client object; the client publishing the stream to the application.

streamObj A Stream object; the stream being published to the application.

Returns
Server ignores any return value.

Example
For a complete client-side and server-side example of multipoint publishing, see Publish from server to server in
Adobe Flash Media Server Developer Guide.

application.onStatus()
application.onStatus = function (infoObject){}

Invoked when the server encounters an error while processing a message that was targeted at this application
instance. The application.onStatus() handler handles any Stream.onStatus() or
NetConnection.onStatus() messages that don’t find handlers. Also, there are a few status calls that come only to
application.onStatus().

Availability
Flash Communication Server 1

Parameters
infoObject An Object with code and level properties that contain information about the status of an appli-
cation. Some information objects also have details and description properties.The following table describes the
information object property values:

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

23

Returns
Any value that the callback function returns.

Example
application.onStatus = function(info){

trace("code: " + info.code + " level: " + info.level);
trace(info.code + " details: " + info.details);

};
// Application.Script.Warning level: warning

application.onUnpublish()
application.onUnpublish = function (clientObj, streamObj){}

Invoked when a client stops publishing a stream to an application. Use this event handler with
application.onPublish()to send traffic to other servers when you’re building a large-scale, live broadcasting appli-
cation.

Note: You cannot change Client object properties in this handler.

Availability
Flash Media Interactive Server 3 and Flash Media Development Server 3

Parameters
clientObj A Client object; the client publishing the stream to the application.

streamObj A Stream object; the stream being published to the application.

Returns
Server ignores any return value.

Code property Level property Description

Application.Script.Error error The ActionScript engine has encountered a runtime error.

This information object also has the following properties:

• filename: name of the offending ASC file.

• lineno: line number where the error occurred.

• linebuf: source code of the offending line.

Application.Script.Warning warning The ActionScript engine has encountered a runtime warning.

This information object also has the following properties:

• filename: name of the offending ASC file.

• lineno: line number where the error occurred.

• linebuf: source code of the offending line.

Application.Resource.LowMemory warning The ActionScript engine is low on runtime memory. This provides an
opportunity for the application instance to free some resources or to take
suitable action.

If the application instance runs out of memory, it is unloaded and all users
are disconnected. In this state, the server does not invoke the
application.onDisconnect() event handler or the
application.onAppStop() event handler.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

24

Example
For a complete client-side and server-side example, see Publish from server to server in Adobe Flash Media Server
Developer Guide.

application.redirectConnection()
application.redirectConnection(clientObj, url[, description[, errorObj]])

Rejects a connection and provides a redirect URL. You must write logic in the NetConnection.onStatus() handler
that detects redirection and passes the new connection URL to the NetConnection.connect() method.

When this method is called, NetConnection.onStatus() is invoked on the client and passed an information object
with the following values:

Availability
Flash Media Interactive Server 3 and Flash Media Development Server 3

Parameters
clientObj A Client object specifying a client to reject.

url A string specifying the new connection URL.

Note: If you omit this parameter, rejectConnection() is called instead.

description A string that lets you provide more information when a connection is redirected.

errorObj An object of any type that is sent to the client, explaining the reason for rejection. The errorObj object
is available in client-side scripts as the application property of the information object that is passed to the
NetConnection.onStatus() call when the connection is rejected.

Example
The following example is server-side code:

application.onConnect = function(clientObj, count){
var err = new Object();
err.message = "This is being rejected";
err.message2 = "This is the second message. with number description";
if (count == 1){

redirectURI = "rtmp://www.example.com/redirected/fromScript";
redirectDescription = "this is being rejected via Server Side Script.";

}
else if (count == 2){

redirectURI = "rtmp://www.example2.com/redirected/fromScript";
redirectDescription = "this is being rejected via Server Side Script.";

}
application.redirectConnection(clientObj, redirectURI, redirectDescription, err);

Property Value

info.code "NetConnection.Connect.Rejected"

info.description The value passed in the description parameter; if no value is passed in the parameter, the default
value is "Connection failed"

info.ex.code 302

info.ex.redirect The new connection URL

info.level "Error"

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

25

}

The following example is client-side ActionScript 3.0 code:

var theConnection:NetConnection;
var theConnection2:NetConnection;
var client:Object = new Object();

function init():void{
connect_button.label = "Connect";
disconnect_button.label = "Disconnect";

connect_button.addEventListener(MouseEvent.CLICK, buttonHandler);
disconnect_button.addEventListener(MouseEvent.CLICK, buttonHandler);

}

function buttonHandler(event:MouseEvent){
switch (event.target){

case connect_button :
doConnect();
break;

case disconnect_button :
disConnect();
break;

}
}
function doConnect(){

makeConnection(theURI.text);
}

function disConnect(){
theConnection.close();

}to

function makeConnection(uri:String){
if (theConnection){

theConnection.close();
}
theConnection = new NetConnection();
theConnection.addEventListener(NetStatusEvent.NET_STATUS, netStatusHandler);
theConnection.client = client;
theConnection.connect(uri);

}

function makeConnection2(uri:String){
if (theConnection2){

theConnection2.close();
}
theConnection2 = new NetConnection();
theConnection2.addEventListener(NetStatusEvent.NET_STATUS, netStatusHandler);
theConnection2.client = client;
theConnection2.connect(uri);

}

function netStatusHandler(event:NetStatusEvent):void{
//Check the Redirect code and make connection to redirect URI if appropriate.

try{
if (event.info.ex.code == 302){

var redirectURI:String;
redirectURI = event.info.ex.redirect;

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

26

if (redirectURI.charCodeAt(redirectURI.length-1) == 13){
redirectURI = redirectURI.slice(0,(redirectURI.length-1));

}
makeConnection2(redirectURI);

}
}

}

init();

application.registerClass()
application.registerClass(className, constructor)

Registers a constructor function that is used when deserializing an object of a certain class type. If the constructor
for a class is not registered, you cannot call the deserialized object’s methods. This method is also used to unregister
the constructor for a class. This is an advanced use of the server and is necessary only when sending ActionScript
objects between a client and a server.

The client and the server communicate over a network connection. Therefore, if you use typed objects, each side
must have the prototype of the same objects they both use. In other words, both the client-side and Server-Side
ActionScript must define and declare the types of data they share so that there is a clear, reciprocal relationship
between an object, method, or property on the client and the corresponding element on the server. You can call
application.registerClass() to register the object’s class type on the server side so that you can use the
methods defined in the class.

Constructor functions should be used to initialize properties and methods; they should not be used for executing
server code. Constructor functions are called automatically when messages are received from the client and need to
be “safe” in case they are executed by a malicious client. You shouldn’t define procedures that could result in negative
situations, such as filling up the hard disk or consuming the processor.

The constructor function is called before the object’s properties are set. A class can define an onInitialize()
method, which is called after the object has been initialized with all its properties. You can use this method to process
data after an object is deserialized.

If you register a class that has its prototype set to another class, you must set the prototype constructor back to the
original class after setting the prototype. The second example below illustrates this point.

Note: Client-side classes must be defined as function function_name(){}, as shown in the following examples. If
not defined in the correct way, application.registerClass() does not identify the class when its instance passes
from the client to the server, and an error is returned.

Availability
Flash Communication Server 1

Parameters
className A string indicating the name of an ActionScript class.

constructor A constructor function used to create an object of a specific class type during object deserialization.
The name of the constructor function must be the same as className. During object serialization, the name of the
constructor function is serialized as the object’s type. To unregister the class, pass the value null as the constructor
parameter. Serialization is the process of turning an object into something that you can send to another computer
over the network.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

27

Example
The following example defines a Color constructor function with properties and methods. After the application
connects, the registerClass() method is called to register a class for the objects of type Color. When a typed
object is sent from the client to the server, this class is called to create the server-side object. After the application
stops, the registerClass() method is called again and passes the value null to unregister the class.

function Color(){
this.red = 255;
this.green = 0;
this.blue = 0;

}
Color.prototype.getRed = function(){

return this.red;
}
Color.prototype.getGreen = function(){

return this.green;
}
Color.prototype.getBlue = function(){

return this.blue;
}
Color.prototype.setRed = function(value){

this.red = value;
}
Color.prototype.setGreen = function(value){

this.green = value;
}
Color.prototype.setBlue = function(value){

this.blue = value;
}
application.onAppStart = function(){

application.registerClass("Color", Color);
};
application.onAppStop = function(){

application.registerClass("Color", null);
};

The following example shows how to use the application.registerClass() method with the prototype
property:

function A(){}
function B(){}

B.prototype = new A();
// Set constructor back to that of B.
B.prototype.constructor = B;
// Insert code here.
application.registerClass("B", B);

application.registerProxy()
application.registerProxy(methodName, proxyConnection [, proxyMethodName])

Maps a method call to another function. You can use this method to communicate between different application
instances that can be on the same Flash Media Server or on different Flash Media Servers. Clients can execute server-
side methods of any application instances to which they are connected. Server-side scripts can use this method to
register methods to be proxied to other application instances on the same server or a different server. You can remove
or unregister the proxy by calling this method and passing null for the proxyConnection parameter, which results
in the same behavior as never registering the method at all.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

28

Availability
Flash Communication Server 1

Parameters
methodName A string indicating the name of a method. All requests to execute methodName for this application
instance are forwarded to the proxyConnection object.

proxyConnection A Client or NetConnection object. All requests to execute the remote method specified by
methodName are sent to the Client or NetConnection object specified in the proxyConnection parameter. Any
result returned is sent back to the originator of the call. To unregister or remove the proxy, provide a value of null
for this parameter.

proxyMethodName A string indicating the name of a method for the server to call on the object specified by the
proxyConnection parameter if proxyMethodName is different from the method specified by the methodName
parameter. This is an optional parameter.

Returns
A value that is sent back to the client that made the call.

Example
In the following example, the application.registerProxy() method is called in a function in the
application.onAppStart() event handler and is executed when the application starts. In the function block, a
new NetConnection object called myProxy is created and connected. The application.registerProxy()
method is then called to assign the method getXyz() to the myProxy object.

application.onAppStart = function(){
var myProxy = new NetConnection();
myProxy.connect("rtmp://xyz.com/myApp");
application.registerProxy("getXyz", myProxy);

};

application.rejectConnection()
application.rejectConnection(clientObj[, description[, errObj])

Note: The description parameter is supported in Flash Media Interactive Server 3 and Flash Media Development
Server 3 and later.

Rejects the connection call from a client to the server. The application.onConnect() handler is invoked when
the client calls NetConnection.connect(). In the application.onConnect() handler, you can either accept or
reject the connection. You can also make a call to an application server to authenticate the client before you accept
or reject it.

Note: When you use version 2 components, the last line (in order of execution) of the onConnect() handler should be
either application.acceptConnection() or application.rejectConnection() (unless you’re leaving the
application in a pending state). Also, any logic that follows acceptConnection() or rejectConnection() must be
placed in application.onConnectAccept() and application.onConnectReject() handlers, or it is ignored.
This requirement exists only when you use version 2 components.

Availability
Flash Communication Server 1

Parameters
clientObj A Client object specifying a client to reject.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

29

description A string that allows you to provide more information when a connection is redirected.

errObj An object of any type that is sent to the client, explaining the reason for rejection. The errObj object is
available in client-side scripts as the application property of the information object that is passed to the
NetConnection.onStatus() call when the connection is rejected.

Example
In the following example, the client is rejected and sent an error message. This is the server-side code:

application.onConnect = function(client){
// Insert code here.
var error = new Object();error.message = "Too many connections";
application.rejectConnection(client, error);

};

This is the client-side code:

clientConn.onStatus = function (info){
if (info.code == "NetConnection.Connect.Rejected"){

trace(info.application.message);
// Sends the message
// "Too many connections" to the Output panel
// on the client side.

}
};

application.server
application.server

Read-only; the platform and version of the server.

Availability
Flash Communication Server 1

Example
The following example checks the server property against a string before executing the code in the if statement:

if (application.server == "Flash Media Server-Windows/1.0"){
// Insert code here.

}

application.shutdown()
application.shutdown()

Unloads the application instance. If the application is running in vhost or application-level scope, only the appli-
cation instance is unloaded, but the core process remains running. If the application is running in instance scope,
the application instance is unloaded and the core process terminates. This process is done asynchronously; the
instance is unloaded when the unload sequence begins, not when the shutdown() call returns.

After shutdown() is called, application.onAppStop() is called, connected clients are disconnected, and
application.onDisconnect() is called for each client. Calls made after calling shutdown() may not be executed.

Availability
Flash Media Server 2

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

30

Returns
A boolean value indicating success (true) or failure (false).

Client class
The Client class lets you handle each user, or client, connection to a Flash Media Server application instance. The
server automatically creates a Client object when a user connects to an application; the object is destroyed when the
user disconnects from the application. Users have unique Client objects for each application to which they are
connected. Thousands of Client objects can be active at the same time.

You can use the properties of the Client class to determine the version, platform, and IP address of each client. You
can also set individual read and write permissions to various application resources such as Stream objects and shared
objects. Use the methods of the Client class to set bandwidth limits and to call methods in client-side scripts.

When you call NetConnection.call() from a client-side ActionScript script, the method that is executed in the
server-side script must be a method of the Client class. In your server-side script, you must define any method that
you want to call from the client-side script. You can also call any methods that you define in the server-side script
directly from the Client class instance in the server-side script.

If all instances of the Client class (each client in an application) require the same methods or properties, you can add
those methods and properties to the class itself instead of adding them to each instance of a class. This process is
called extending a class. To extend a class, instead of defining methods in the constructor function of the class or
assigning them to individual instances of the class, you assign methods to the prototype property of the constructor
function of the class. When you assign methods and properties to the prototype property, the methods are
automatically available to all instances of the class.

The following code shows how to assign methods and properties to an instance of a class. In the
application.onConnect() handler, the client instance clientObj is passed to the server-side script as a
parameter. You can then assign a property and method to the client instance.

application.onConnect = function(clientObj){
clientObj.birthday = myBDay;
clientObj.calculateDaysUntilBirthday = function(){

// Insert code here.
}

};

The previous example works, but must be executed every time a client connects. If you want the same methods and
properties to be available to all clients in the application.clients array without defining them every time, assign
them to the prototype property of the Client class.

There are two steps to extending a built-in class by using the prototype property. You can write the steps in any
order in your script. The following example extends the built-in Client class, so the first step is to write the function
that you will assign to the prototype property:

// First step: write the functions.

function Client_getWritePermission(){
// The writeAccess property is already built in to the Client class.

return this.writeAccess;
}

function Client_createUniqueID(){
var ipStr = this.ip;

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

31

// The ip property is already built in to the Client class.
var uniqueID = "re123mn"

// You would need to write code in the above line
// that creates a unique ID for each client instance.

return uniqueID;
}

// Second step: assign prototype methods to the functions.

Client.prototype.getWritePermission = Client_getWritePermission;
Client.prototype.createUniqueID = Client_createUniqueID;

// A good naming convention is to start all class method
// names with the name of the class followed by an underscore.

You can also add properties to prototype, as shown in the following example:

Client.prototype.company = "Adobe";

The methods are available to any instance, so within application.onConnect(), which is passed a clientObj
parameter, you can write the following code:

application.onConnect = function(clientObj){
var clientID = clientObj.createUniqueID();
var clientWritePerm = clientObj.getWritePermission();

};

Availability
Flash Communication Server 1

Property summary

Property Description

Client.agent Read-only; the version and platform of the client.

Client.audioSampleAccess Enables Flash Player to access raw, uncompressed audio data from streams in the specified
folders.

Client.id Read-only; a string that uniquely identifies the client.

Client.ip Read-only; A string containing the IP address of the client.

Client.pageUrl Read-only; A string containing the URL of the web page in which the client SWF file is
embedded.

Client.protocol Read-only; A string indicating the protocol used by the client to connect to the server.

Client.readAccess A string of directories containing application resources (shared objects and streams) to
which the client has read access.

Client.referrer Read-only; A string containing the URL of the SWF file or the server in which this connection
originated.

Client.secure Read-only; A boolean value that indicates whether this is an SSL connection (true) or not
(false).

Client.uri Read-only; the URI specified by the client to connect to this application instance.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

32

Method summary

Client.agent
clientObject.agent

Read-only; the version and platform of the client.

When a client connects to the server, the format of Client.agent is as follows:

Operating_System Flash_Player_Version

For example, if Flash Player version 9.0.45.0 is running on Windows, the value of Client.agent is:

"WIN 9,0,45,0".

When a connection is made to another Flash Media Interactive Server, the format of Client.agent is as follows:

Server_Name/Server_Version Operating_System/Operating_System_Build

For example, if the server version is 3.0.0 and it’s running on Windows Server 2003, the value of Client.agent is:

"FlashCom/3.0.0 WIN/5.1.2600".

Availability
Flash Communication Server 1

Example
The following example checks the agent property against the string "WIN" and executes different code depending
on whether they match. This code is written in an onConnect() function:

function onConnect(newClient, name){
if (newClient.agent.indexOf("WIN") > -1){

trace ("Window user");

Client.videoSampleAccess Enables Flash Player to access raw, uncompressed video data from streams in the specified
folders.

Client.virtualKey A virtual mapping for clients connecting to the server.

Client.writeAccess Provides write access to directories that contain application resources (such as shared
objects and streams) for this client.

Method Description

Client.call() Executes a method on a client or on another server.

Client.checkBandwidth() Call this method from a client-side script to detect bandwidth.

Client.getBandwidthLimit() Returns the maximum bandwidth that the client or the server can use for this connection.

Client.getStats() Returns statistics for the client.

Client.getStreamLength() Returns the length of a stream, in seconds.

Client.ping() Sends a ”ping“ message to the client and waits for a response.

Client.remoteMethod() Invoked when a client or another server calls the NetConnection.call() method.

Client.__resolve() Provides values for undefined properties.

Client.setBandwidthLimit() Sets the maximum bandwidth for this client from client to server, server to client, or both.

Property Description

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

33

} else {
trace ("non Window user.agent is" + newClient.agent);

}
}

Client.audioSampleAccess
clientObject.audioSampleAccess

Enables Flash Player to access raw, uncompressed audio data from streams in the specified folders.

Call the SoundMixer.computeSpectrum() method in client-side ActionScript 3.0 to read the raw sound data for a
waveform that is currently playing. For more information, see the SoundMixer.computeSpectrum() entry in the
ActionScript 3.0 Language and Components Reference and “Accessing raw sound data” in Programming ActionScript
3.0.

Availability
Flash Media Interactive Server 3 and Flash Media Development Server 3

Example
The following server-side code sets the audioSampleAccess directory to publicdomain:

application.onConnect = function(client) {

 // Anyone can play free content, which is all streams placed under the
 // samples/, publicdomain/ and contrib/ folders.

client.readAccess = "samples;publicdomain;contrib";

 // Paying customers get to watch more streams.
 if (isPayingCustomer(client))

client.readAccess += "nonfree;premium";

 // Content can be saved (user recorded streams) to contrib/ folder.
client.writeAccess = "contrib";

 // Anyone can gain access to an audio snapshot of the publicdomain/ folder.
client.audioSampleAccess = "publicdomain";

 // Paying customers can also get a video snapshot of the publicdomain/ folder.
if (isPayingCustomer(client))

client.videoSampleAccess = "publicdomain";
}

See also
Client.videoSampleAccess

Client.call()
clientObject.call(methodName, [resultObj, [p1, ..., pN]])

Executes a method on a client or on another server. The remote method may return data to the resultObj
parameter, if provided. Whether the remote agent is a client or another server, the method is called on the remote
agent’s NetConnection object.

Availability
Flash Communication Server 1

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

34

Parameters
methodName A string indicating a method specified in the form "[objectPath/]method". For example, the
command "someObj/doSomething" tells the client to invoke the NetConnection.someObj.doSomething()
method on the client.

resultObj An Object. This is an optional parameter that is required when the sender expects a return value from
the client. If parameters are passed but no return value is desired, pass the value null. The result object can be any
object that you define. To be useful, it should have two methods that are invoked when the result arrives:
onResult() and onStatus(). The resultObj.onResult() event is triggered if the invocation of the remote
method is successful; otherwise, the resultObj.onStatus() event is triggered.

p1, ..., pN Optional parameters that can be of any ActionScript type, including a reference to another Action-
Script object. These parameters are passed to the methodName parameter when the method is executed on the Flash
client. If you use these optional parameters, you must pass in some value for resultObj; if you do not want a return
value, pass null.

Returns
A boolean value of true if a call to methodName was successful on the client; otherwise, false.

Example
The following example shows a client-side script that defines a function called getNumber(), which generates a
random number:

nc = new NetConnection();
nc.getNumber = function(){

return (Math.random());
};

nc.connect("rtmp:/clientCall");

The following server-side script calls Client.call() in the application.onConnect() handler to call the
getNumber() method that was defined on the client. The server-side script also defines a function called
randHander(), which is used in the Client.call() method as the resultObj parameter.

randHandler = function(){
this.onResult = function(res){

trace("Random number: " + res);
}
this.onStatus = function(info){

trace("Failed with code:" + info.code);
}

};
application.onConnect = function(clientObj){

trace("Connected");
application.acceptConnection(clientObj);
clientObj.call("getNumber", new randHandler());

};

Note: This example does not work with version 2 components. For an example of calling Client.call() when using
version 2 components, see application.onConnectAccept().

Client.checkBandwidth()
clientObject.checkBandwidth()

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

35

Call this method from a client-side script to detect client bandwidth. If the client is connected directly to the origin
server, bandwidth detection occurs on the origin. If the client is connected to the origin server through an edge
server, bandwidth detection happens at the first edge to which the client connected.

To use this method to detect client bandwidth, you must also define onBWDone() and onBWCheck() methods in a
client-side script. For more information, see Detect bandwidth in Adobe Flash Media Server Developer Guide.

Note: If this function is defined in a server-side script, the client call invokes that instead of the checkBandwith()
definition in the core server code.

Availability
Flash Media Interactive Server 3 and Flash Media Development Server 3

Client.getBandwidthLimit()
clientObject.getBandwidthLimit(iDirection)

Returns the maximum bandwidth that the client or the server can use for this connection. Use the iDirection
parameter to get the value for each direction of the connection. The value returned indicates bytes per second and
can be changed with the Client.setBandwidthLimit() method. Set the default value for a connection in the
Application.xml file of each application.

Availability
Flash Communication Server 1

Parameters
iDirection A number specifying the connection direction. The value 0 indicates a client-to-server direction; 1
indicates a server-to-client direction.

Returns
A number.

Example
The following example uses Client.getBandwidthLimit() to set the variables clientToServer and
serverToClient:

application.onConnect = function(newClient){
var clientToServer= newClient.getBandwidthLimit(0);var serverToClient=

newClient.getBandwidthLimit(1);
};

Client.getStats()
clientObject.getStats()

Returns statistics for the client.

Availability
Flash Communication Server 1

Returns
An Object with various properties for each statistic returned. The following table describes the properties of the
returned object:

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

36

Example
The following example outputs a client’s statisitics:

function testStats(){
var stats = client.getStats();
for(var prop in stats){

 trace("stats." + prop + " = " + stats[prop]);
}

}

application.onConnect = function(client){
this.acceptConnection(client);
testStats();

};

Client.getStreamLength()
clientObject.getStreamLength(streamObj)

Returns the length of a stream, in seconds. Call this method from a client-side script and specify a response object
to receive the returned value.

Property Description

bytes_in Total number of bytes received.

bytes_out Total number of bytes sent.

msg_in Total number of RTMP messages received.

msg_out Total number of RTMP messages sent.

msg_dropped Total number of dropped RTMP messages.

ping_rtt Length of time the client takes to respond to a ping message.

audio_queue_msgs Current number of audio messages in the queue waiting to be delivered to the client.

video_queue_msgs Current number of video messages in the queue waiting to be delivered to the client.

so_queue_msgs Current number of shared object messages in the queue waiting to be delivered to the client.

data_queue_msgs Current number of data messages in the queue waiting to be delivered to the client.

dropped_audio_msgs Number of audio messages that were dropped.

dropped_video_msgs Number of video messages that were dropped.

audio_queue_bytes Total size of all audio messages (in bytes) in the queue waiting to be delivered to the client.

video_queue_bytes Total size of all video messages (in bytes) in the queue waiting to be delivered to the client.

so_queue_bytes Total size of all shared object messages (in bytes) in the queue waiting to be delivered to the client.

data_queue_bytes Total size of all data messages (in bytes) in the queue waiting to be delivered to the client.

dropped_audio_bytes Total size of all audio messages (in bytes) that were dropped.

dropped_video_bytes Total size of all video messages (in bytes) that were dropped.

bw_out Current upstream (client to server) bandwidth for this client.

bw_in Current downstream (server to client) bandwidth for this client.

client_id A unique ID issued by the server for this client.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

37

Availability
Flash Media Interactive Server 3 and Flash Media Development Server 3

Parameters
streamObj A Stream object.

Returns
A number.

Example
The following client-side code gets the length of the sample_video stream and returns the value to returnObj:

nc.call("getStreamLength", returnObj, "sample_video");

Client.id
clientObject.id

Read-only; a string that uniquely identifies the client.

Availability
Flash Media Server 3

Example
The following onConnect() function traces the ID of the connecting client:

application.onConnect(newClient) {
trace(newClient.id);

}

Client.ip
clientObject.ip

Read-only; A string containing the IP address of the client.

Availability
Flash Communication Server 1

Example
The following example uses the Client.ip property to verify whether a new client has a specific IP address. The
result determines which block of code runs.

application.onConnect = function(newClient, name){
if (newClient.ip == "127.0.0.1"){

// Insert code here.
} else {

// Insert code here.
}

};

Client.pageUrl
clientObject.pageUrl

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

38

Read-only; A string containing the URL of the web page in which the client SWF file is embedded. If the SWF file
isn’t embedded in a web page, the value is the location of the SWF file. The following code shows the two examples:

// trace.swf file is embedded in trace.html.
client.pageUrl: http://www.example.com/trace.html

// trace.swf is not embedded in an html file.
client.pageUrl: http://www.example.com/trace.swf

The value can be an HTTP address or a local file address (for example, file:///C:/Flash Media Server applica-
tions/example.html).

Availability
Flash Media Server 2

Example
The following example uses the Client.pageURI property to verify whether a new client is located at a particular
URI. The result determines which block of code runs.

application.onConnect = function(newClient){
if (newClient.pageUrl == "http://www.example.com/index.html"){

return true;
} else {

return false;
}

};

Client.ping()
clientObject.ping()

Sends a “ping” message to the client and waits for a response. If the client responds, the method returns true;
otherwise, false. Use this method to determine whether the client connection is still active.

Availability
Flash Communication Server 1

Example
The following onConnect() function pings the connecting client and traces the results of the method:

application.onConnect(newClient) {
if (newClient.ping()){

trace("ping successful");
}
else {

trace("ping failed");
}

}

See also
Client.getStats()

Client.protocol
clientObject.protocol

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

39

Read-only; A string indicating the protocol used by the client to connect to the server. This string can have one of
the following values:

Availability
Flash Communication Server 1

Example
The following example checks the connection protocol used by a client upon connection to the application:

application.onConnect(clientObj){
if(clientObj.protocol == "rtmp") {

trace("Client connected over RTMP");
} else if(clientOjb.protocol == "rtmpt") {

trace("Client connected over RTMP tunneled over HTTP");
}

}

Client.readAccess
clientObject.readAccess

A string of directories containing application resources (shared objects and streams) to which the client has read
access. To give a client read access to directories that contain application resources, list the directories in a string
delimited by semicolons.

Availability
Flash Communication Server 1

Details
By default, all clients have full read access, and the readAccess property is set to slash (/). To give a client read
access, specify a list of access levels (in URI format), delimited by semicolons. Any files or directories within a
specified URI are also considered accessible. For example, if myMedia is specified as an access level, any files or direc-
tories in the myMedia directory are also accessible (for example, myMedia/mp3s). Similarly, any files or directories
in the myMedia/mp3s directory are also accessible, and so on.

Clients with read access to a directory that contains streams can play streams in the specified access levels. Clients
with read access to a directory that contains shared objects can subscribe to shared objects in the specified access
levels and receive notification of changes in the shared objects.

• For streams, readAccess controls the streams that the connection can play.

• For shared objects, readAccess controls whether the connection can listen to shared object changes.

Although you cannot use this property to control access for a particular file, you can create a separate directory for
a file if you want to control access to it.

Protocol Description

rtmp RTMP over a persistent socket connection.

rtmpt RTMP tunneled over HTTP.

rtmps RTMP over an SSL (Secure Socket Layer) connection.

rtmpe An encrypted RTMP connection.

rtmpte An encrypted RTMP connection tunneled over HTTP.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

40

Note: You cannot set this property in the application.onPublish() event.

Example
The following onConnect() function gives a client read access to myMedia/mp3s, myData/notes, and any files or
directories within them:

application.onConnect = function(newClient, name){
newClient.readAccess = "myMedia/mp3s;myData/notes";

};

Client.referrer
clientObject.referrer

Read-only; A string containing the URL of the SWF file or the server in which this connection originated.

Availability
Flash Communication Server 1

Example
application.onConnect = function(newClient, name){

trace("New user connected to server from" + newClient.referrer);
};

Client.remoteMethod()
myClient.remoteMethod = function([p1, ..., pN]){}

Invoked when a client or another server calls the NetConnection.call() method. A remoteMethod parameter is
passed to NetConnection.call(). The server searches the Client object instance for a method that matches the
remoteMethod parameter. If the method is found, it is invoked and the return value is sent back to the result object
specified in the call to NetConnection.call().

Availability
Flash Communication Server 1

Parameters
p1, ..., pN Optional parameters passed to the NetConnection.call() method.

Example
The following example creates a method called sum() as a property of the Client object newClient on the server
side:

newClient.sum = function(op1, op2){
return op1 + op2;

};

The sum() method can then be called from NetConnection.call() on the client side:

nc = new NetConnection();
nc.connect("rtmp://myServer/myApp");
nc.call("sum", new result(), 20, 50);
function result(){

this.onResult = function (retVal){
output += "sum is " + retVal;

};
this.onStatus = function(errorVal){

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

41

output += errorVal.code + " error occurred";
};

}

The sum() method can also be called on the server:

newClient.sum();

The following example creates two functions that you can call from either a client-side or server-side script:

application.onConnect = function(clientObj) {
// The function foo returns 8.
clientObj.foo = function() {return 8;};
// The function bar is defined outside the onConnect call.
clientObj.bar = application.barFunction;

};
// The bar function adds the two values it is given.
application.barFunction = function(v1,v2) {

return (v1 + v2);
};

You can call either of the two functions that were defined in the previous example (foo and bar) by using the
following code in a client-side script:

c = new NetConnection();
c.call("foo");
c.call("bar", null, 1, 1);

You can call either of the two functions that were defined in the previous example (foo and bar) by using the
following code in a server-side script:

c = new NetConnection();
c.onStatus = function(info) {

if(info.code == "NetConnection.Connect.Success") {
c.call("foo");
c.call("bar", null, 2, 2);

}
};

Client.__resolve()
Client.__resolve = function(propName){}

Provides values for undefined properties. When an undefined property of a Client object is referenced by Server-
Side ActionScript code, the Client object is checked for a _resolve() method. If the object has a _resolve()
method, it is invoked and passed the name of the undefined property. The return value of the _resolve() method
is the value of the undefined property. In this way, _resolve() can supply the values for undefined properties and
make it appear as if they are defined.

Availability
Flash Communication Server 1

Parameters
propName A string indicating the name of an undefined property.

Returns
The value of the property specified by the propName parameter.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

42

Example
The following example defines a function that is called whenever an undefined property is referenced:

Client.prototype.__resolve = function (name) {
return "Hello, world!";

};
function onConnect(newClient){
// Prints "Hello World".

trace (newClient.property1);
}

Client.secure
clientObject.secure

Read-only; A boolean value that indicates whether this is an SSL connection (true) or not (false).

Availability
Flash Media Server 2

Client.setBandwidthLimit()
clientObject.setBandwidthLimit(iServerToClient, iClientToServer)

Sets the maximum bandwidth for this client from client to server, server to client, or both. The default value for a
connection is set for each application in the Client section of the Application.xml file. The value specified cannot
exceed the bandwidth cap value specified in the Application.xml file. For more information, see Adobe Flash Media
Server Configuration and Administration Guide.

Availability
Flash Communication Server 1

Parameters
iServerToClient A number; the bandwidth from server to client, in bytes per second. Use 0 if you don’t want to
change the current setting.

iClientToServer A number; the bandwidth from client to server, in bytes per second. Use 0 if you don’t want to
change the current setting.

Example
The following example sets the bandwidth limits for each direction, based on values passed to the onConnect()
function:

application.onConnect = function(newClient, serverToClient, clientToServer){
newClient.setBandwidthLimit(serverToClient, clientToServer);
application.acceptConnection(newClient);

}

Client.uri
clientObject.uri

Read-only; the URI specified by the client to connect to this application instance.

Availability
Flash Media Server 2

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

43

Example
The following example defines an onConnect() callback function that sends a message indicating the URI that the
new client used to connect to the application:

application.onConnect = function(newClient, name){
trace("New user requested to connect to " + newClient.uri);

};

Client.videoSampleAccess
clientObject.videoSampleAccess

Enables Flash Player to access raw, uncompressed video data from streams in the specified folders.

Calls the BitmapData.draw() method in client-side ActionScript 3.0 to read the raw data for a stream that is
currently playing. For more information, see the BitmapData.draw() entry in ActionScript 3.0 Language and
Components Reference.

Availability
Flash Media Interactive Server 3 and Flash Media Development Server 3

Example
The following server-side code sets the videoSampleAccess directory to publicdomain for paying customers:

application.onConnect = function(client) {

 // Anyone can play free content, which is all streams placed under the
 // samples/, publicdomain/, and contrib/ folders.

client.readAccess = "samples;publicdomain;contrib";

 // Paying customers get to watch more streams.
 if (isPayingCustomer(client))

client.readAccess += "nonfree;premium";

 // Content can be saved (user recorded streams) to the contrib/ folder.
client.writeAccess = "contrib";

 // Anyone can gain access to an audio snapshot of the publicdomain/ folder.
client.audioSampleAccess = "publicdomain";

 // Paying customers can also get a video snapshot of the publicdomain/ folder.
if (isPayingCustomer(client))

client.videoSampleAccess = "publicdomain";
}

See also
Client.audioSampleAccess

Client.virtualKey
clientObject.virtualKey

A virtual mapping for clients connecting to the server. When a client connects, it receives a virtual key that corre-
sponds to ranges that you set in the Vhost.xml file. You can use Client.virtualKey to change that value in a server-
side script. The following is the code in the Vhost.xml file that you must configure:

<VirtualKeys>
<!-- Create your own ranges and key values.-->

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

44

<!-- You can create as many Key elements as you need.-->
<Key from="WIN 7,0,19,0" to="WIN 9,0,0,0">A</Key>

</VirtualKeys>

Using the previous Vhost.xml file, if a Flash Player 8 client connected to the server, its Client.virtualKey value
would be A.

Note: A legal key cannot contain the characters “*” and “:”.

Use this property in conjunction with Stream.setVirtualPath() to map stream URLs to physical locations on the
server. This allows you to serve different content to different versions of Flash Player. For more information, see
Stream.setVirtualPath().

Availability
Flash Media Server 2

Client.writeAccess
clientObject.writeAccess

Provides write access to directories that contain application resources (such as shared objects and streams) for this
client. To give a client write access to directories that contain application resources, list directories in a string
delimited by semicolons. By default, all clients have full write access, and the writeAccess property is set to slash
(/). For example, if myMedia is specified as an access level, then any files or directories in the myMedia directory are
also accessible (for example, myMedia/myStreams). Similarly, any files or subdirectories in the myMedia/myStreams
directory are also accessible, and so on.

• For shared objects, writeAccess provides control over who can create and update the shared objects.

• For streams, writeAccess provides control over who can publish and record a stream.

You cannot use this property to control access to a single file. To control access to a single file, create a separate
directory for the file.

Don’t precede the stream path with a leading slash (/) on the client side.

Note: You cannot set this property in the application.onPublish() event.

Availability
Flash Communication Server 1

Example
The following example provides write access to the /myMedia/myStreams and myData/notes directories:

application.onConnect = function(newClient, name){
newClient.writeAccess = "/myMedia/myStreams;myData/notes";
application.acceptConnection();

};

The following example completely disables write access:

application.onConnect = function(clientObj){
clientObj.writeAccess = "";
return true;

};

See also
Client.readAccess

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

45

File class
The File class lets applications write to the server’s file system. This is useful for storing information without using a
database server, creating log files for debugging, and tracking usage. Also, a directory listing is useful for building a
content list of streams or shared objects without using Flash Remoting.

By default, a script can access files and directories only within the application directory of the hosting application. A
server administrator can grant access to additional directories by specifying virtual directory mappings for File
object paths. This is done in the FileObject tag in the Application.xml file, as shown in the following example:

<FileObject>
<VirtualDirectory>/videos;C:\myvideos</VirtualDirectory>
<VirtualDirectory>/fmsapps;C:\Program Files\fms\applications</VirtualDirectory>

</FileObject>

This example specifies two additional directory mappings in addition to the default application directory. Any path
that begins with /videos—for example, /videos/xyz/vacation.flv—maps to c:/myvideos/xyz/vaction.flv. Similarly,
/fmsapps/conference maps to c:/Program Files/fms/applications/conference. Any path that does not match a
mapping resolves to the default application folder. For example, if c:/myapps/filetest is the application directory, then
/streams/hello.flv maps to c:/myapps/filetest/streams/hello.flv.

Note: You can use an Application.xml file at the virtual host level or at the application level. For more information, see
Adobe Flash Media Server Configuration and Administration Guide.

In addition, the following rules are enforced by the server:

• File objects cannot be created by using native file path specification.

• File object paths must follow the URI convention:

A slash (/) must be used as the path separator. Access is denied if a path contains a backslash (\), or if a dot (.) or
two dots (..) is the only string component found between path separators.

• Root objects cannot be renamed or deleted.

For example, if a path using a slash (/) is used to create a File object, the application folder is mapped.

Availability
Flash Media Server 2

Property summary

Property Description

File.canAppend Read-only; a boolean value indicating whether a file can be appended (true) or not
(false).

File.canRead Read-only; A boolean value indicating whether a file can be read (true) or not (false).

File.canReplace Read-only; A boolean value indicating whether a file was opened in "create" mode (true)
or not (false). This property is undefined for closed files.

File.canWrite Read-only; a boolean value indicating whether a file can be written to (true) or not (false).

File.creationTime Read-only; a Date object containing the time the file was created.

File.exists Read-only; a boolean value indicating whether the file or directory exists (true) or not
(false).

File.isDirectory Read-only; a boolean value indicating whether the file is a directory (true) or not (false).

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

46

Method summary

File.isFile Read-only; a boolean value indicating whether the file is a regular data file (true) or not
(false).

File.isOpen Read-only; a boolean value indicating whether the file has been successfully opened and is
still open (true) or not (false).

File.lastModified Read-only; a Date object containing the time the file was last modified.

File.length Read-only; for a directory, the number of files in the directory, not counting the current
directory and parent directory entries; for a file, the number of bytes in the file.

File.mode Read-only; the mode of an open file.

File.name Read-only; a string indicating the name of the file.

File.position The current offset in the file.

File.type Read-only; a string specifying the type of data or encoding used when a file is opened.

Method Description

File.close() Closes the file.

File.copyTo() Copies a file to a different location or copies it to the same location with a different filename.

File.eof() Returns a boolean value indicating whether the file pointer is at the end of file (true) or not
(false).

File.flush() Flushes the output buffers of a file.

File.list() If the file is a directory, lists the files in the directory.

File.mkdir() Creates a directory.

File.open() Opens a file so that you can read from it or write to it.

File.read() Reads the specified number of characters from a file and returns a string.

File.readAll() Reads the file after the location of the file pointer and returns an array with an element for
each line of the file.

File.readByte() Reads the next byte from the file and returns the numeric value of the next byte, or -1 if the
operation fails.

File.readln() Reads the next line from the file and returns it as a string.

File.remove() Removes the file or directory pointed to by the File object.

File.renameTo() Moves or renames a file.

File.seek() Skips a specified number of bytes and returns the new file position.

File.toString() Returns the path to the File object.

File.write() Writes data to a file.

File.writeAll() Takes an array as a parameter and calls the File.writeln() method on each element in
the array.

File.writeByte() Writes a byte to a file.

File.writeln() Writes data to a file and adds a platform-dependent end-of-line character after outputting
the last parameter.

Property Description

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

47

File constructor
fileObject = new File(name)

Creates an instance of the File class.

Availability
Flash Media Server 2

Parameters
name A string indicating the name of the file or directory. The name can contain only UTF-8 encoded characters;
high byte values can be encoded by using the URI character-encoding scheme. The specified name is mapped to a
system path by using the mappings specified in the FileObject section of the Application.xml file. If the path is
invalid, the name property of the object is set to an empty string, and no file operation can be performed.

Returns
A File object if successful; otherwise, null.

Example
The following code creates an instance of the File class:

var errorLog = new File("/logs/error.txt");

Note that the physical file isn’t created on the hard disk until you call File.open().

File.canAppend
fileObject.canAppend

Read only; a boolean value indicating whether a file can be appended (true) or not (false). The property is
undefined for closed files.

Availability
Flash Media Server 2.0

File.canRead
fileObject.canRead

Read-only; A boolean value indicating whether a file can be read (true) or not (false).

Availability
Flash Media Server 2

File.canReplace
fileObject.canReplace

Read-only; A boolean value indicating whether a file was opened in "create" mode (true) or not (false). This
property is undefined for closed files.

Availability
Flash Media Server 2

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

48

File.canWrite
fileObject.canWrite

Read only; a boolean value indicating whether a file can be written to (true) or not (false).

Note: If File.open() was called to open the file, the mode in which the file was opened is respected. For example, if the
file was opened in read mode, you can read from the file, but you cannot write to the file.

Availability
Flash Media Server 2

File.close()
fileObject.close()

Closes the file. This method is called automatically on an open File object when the object is out of scope.

Availability
Flash Media Server 2

Returns
A boolean value indicating whether the file was closed successfully (true) or not (false). Returns false if the file
is not open.

Example
The following code closes the /path/file.txt file:

if (x.open("/path/file.txt", "read")){
// Do something here.
x.close();

}

File.copyTo()
fileObject.copyTo(name)

Copies a file to a different location or copies it to the same location with a different filename. This method returns
false if the source file doesn't exist or if the source file is a directory. When this method fails, it invokes the appli-
cation.onStatus() event handler to report errors.

Note: The user or process owner that the server runs under in the operating system must have adequate write permis-
sions or the call can fail.

Availability
Flash Media Server 2

Parameters
name Specifies the name of the destination file. The name can contain only UTF-8 characters; high byte values can
be encoded by using the URI character-encoding scheme. The name specified is mapped to a system path by using
the mappings specified in the Application.xml file. If the path is invalid or if the destination file doesn’t exist, the
operation fails, and the method returns false.

Returns
A boolean value indicating whether the file is copied successfully (true) or not (false).

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

49

Example
The following code copies the file set by the myFileObj File object to the location provided by the parameter:

if (myFileObj.copyTo("/logs/backup/hello.log")){
// Do something here.

}

File.creationTime
fileObject.creationTime

Read-only; a Date object containing the time the file was created.

Availability
Flash Media Server 2

File.eof()
fileObject.eof()

Returns a boolean value indicating whether the file pointer is at the end of file (true) or not (false). If the file is
closed, the method returns true.

Availability
Flash Media Server 2

Returns
A boolean value.

Example
The following while statement lets you insert code that is executed until the file pointer is at the end of a file:

while (!myFileObj.eof()){
// Do something here.
}

File.exists
fileObject.exists

Read-only; a boolean value indicating whether the file or directory exists (true) or not (false).

Availability
Flash Media Server 2

File.flush()
fileObject.flush()

Flushes the output buffers of a file. If the file is closed, the operation fails. When this method fails, it invokes the
application.onStatus() event handler to report errors.

Availability
Flash Media Server 2

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

50

Returns
A boolean value indicating whether the flush operation was successful (true) or not (false).

File.isDirectory
fileObject.isDirectory

Read-only; a boolean value indicating whether the file is a directory (true) or not (false).

A File object that represents a directory has properties that represent the files contained in the directory. These
properties have the same names as the files in the directory, as shown in the following example:

myDir = new File("/some/directory");
myFileInDir = myDir.fileName;
trace(myDir.isDirectory) // Outputs true.

The following example uses named property lookup to refer to files that do not have valid property names:

mySameFileInDir = myDir["fileName"];
myOtherFile = myDir["some long filename with spaces"];

Availability
Flash Media Server 2

File.isFile
fileObject.isFile

Read-only; a boolean value indicating whether a file is a regular data file (true) or not (false).

Availability
Flash Media Server 2

File.isOpen
fileObject.isOpen

Read-only; a boolean value indicating whether the file has been successfully opened and is still open (true) or not
(false).

Note: Directories do not need to be opened.

Availability
Flash Media Server 2

File.lastModified
fileObject.lastModified

Read-only; a Date object containing the time the file was last modified.

Availability
Flash Media Server 2

File.length
fileObject.length

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

51

Read-only; for a directory, the number of files in the directory, not counting the current directory and parent
directory entries; for a file, the number of bytes in the file.

Availability
Flash Media Server 2

File.list()
fileObject.list(filter)

If the file is a directory, lists the files in the directory. Returns an array with an element for each file in the directory.

Availability
Flash Media Server 2

Parameters
filter A Function object that determines the files in the returned array.

If the function returns true when a file’s name is passed to it as a parameter, the file is added to the array returned
by File.list(). This parameter is optional and allows you to filter the results of the call.

Returns
An Array object.

Example
The following example returns files in the current directory that have 3-character names:

var a = x.currentDir.list(function(name){return name.length==3;});

File.mkdir()
fileObject.mkdir(newDir)

Creates a directory. The directory is created in the directory specified by fileObject. When this method fails, it
invokes the application.onStatus() event handler to report errors.

The user or process owner that the server runs under in the operating system must have adequate write permissions
or the call can fail.

Note: You cannot call this method from a File object that is a file (where isFile is true). You must call this method
from a File object that is a directory (where isDirectory is true).

Availability
Flash Media Server 2

Parameters
newDir A string indicating the name of the new directory. This name is relative to the current File object instance.

Returns
A boolean value indicating success (true) or failure (false).

Example
The following example creates a logs directory in the myFileObject instance:

if (myFileObject.mkdir("logs")){

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

52

// Do something if a logs directory is created successfully.
}

File.mode
fileObject.mode

Read-only; the mode of an open file. It can be different from the mode parameter that was passed to the open()
method for the file if you have repeating attributes (for example, "read, read") or if some attributes were ignored.
If the file is closed, the property is undefined.

Availability
Flash Media Server 2

See also
File.open()

File.name
fileObject.name

Read-only; a string indicating the name of the file. If the File object was created with a invalid path, the value is an
empty string.

Availability
Flash Media Server 2

File.open()
fileObject.open(type, mode)

Opens a file so that you can read from it or write to it. First use the File constructor to create a File object and then
call open() on that object. When the open() method fails, it invokes the application.onStatus() event handler
to report errors.

Availability
Flash Media Server 2

Parameters
type A string indicating the encoding type for the file. The following types are supported (there is no default
value):

mode A string indicating the mode in which to open the file. The following modes are valid and can be combined
(modes are case sensitive and multiple modes must be separated by commas—for example, "read,write"; there is
no default value):

Value Description

"text" Opens the file for text access by using the default file encoding.

"binary" Opens the file for binary access.

"utf8" Opens the file for UTF-8 access.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

53

Note: If both "read" and "write" are set, "readWrite" is automatically set. The user or process owner that the server
runs under in the operating system must have write permissions to use “create”, “append”, “readWrite”, and “write”
modes.

Returns
A boolean value indicating whether the file opened successfully (true) or not (false).

Example
The following client-side script creates a connection to an application called file:

var nc:NetConnection = new NetConnection();
function traceStatus(info) {

trace("Level: " + info.level + " Code: " + info.code);
}
nc.onStatus = traceStatus;
nc.connect("rtmp:/file");

The following server-side script creates a text file called log.txt and writes text to the file:

application.onConnect = function(client){
this.acceptConnection(client);
var logFile = new File("log.txt");
if(!logFile.exists){

logFile.open("text", "append");
logFile.write("something", "somethingElse")

}
};

File.position
fileObject.position

The current offset in the file. This is the only property of the File class that can be set. Setting this property performs
a seek operation on the file. The property is undefined for closed files.

Availability
Flash Media Server 2

File.read()
fileObject.read(numChars)

Reads the specified number of characters from a file and returns a string. If the file is opened in binary mode, the
operation fails. When this method fails, it invokes the application.onStatus() event handler to report errors.

Value Description

"read" Opens a file for reading.

"write" Opens a file for writing.

"readWrite" Opens a file for both reading and writing.

"append" Opens a file for writing and positions the file pointer at the end of the file when you attempt to write
to the file.

"create" Creates a new file if the file is not present. If a file exists, its contents are destroyed and a new file is
created.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

54

Availability
Flash Media Server 2

Parameters
numChars A number specifying the number of characters to read. If numChars specifies more bytes than are left
in the file, the method reads to the end of the file.

Returns
A string.

Example
The following code opens a text file in read mode and sets variables for the first 100 characters, a line, and a byte:

if (myFileObject.open("text", "read")){
strVal = myFileObject.read(100);
strLine = myFileObject.readln();
strChar = myFileObject.readByte();

}

File.readAll()
fileObject.readAll()

Reads the file after the location of the file pointer and returns an Array object with an element for each line of the
file. If the file opened in binary mode., the operation fails. When this method fails, it invokes the appli-
cation.onStatus() event handler to report errors.

Availability
Flash Media Server 2

Returns
An Array object.

File.readByte()
fileObject.readByte()

Reads the next byte from the file and returns the numeric value of the next byte or -1 if the operation fails. If the file
is not opened in binary mode, the operation fails.

Availability
Flash Media Server 2

Returns
A number; either a positive integer or -1.

File.readln()
fileObject.readln()

Reads the next line from the file and returns it as a string. The line-separator characters (either \r\n on Windows or
\n on Linux) are not included in the string. The character \r is skipped; \n determines the actual end of the line. If
the file opened in binary mode, the operation fails.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

55

Availability
Flash Media Server 2

Returns
A string.

File.remove()
fileObject.remove(recursive)

Removes the file or directory pointed to by the File object. When this method fails, it invokes the appli-
cation.onStatus() event handler to report errors.

Availability
Flash Media Server 2

Parameters
recursive A boolean value specifying whether to do a recursive removal of the directory and all its contents
(true), or a nonrecursive removal of the directory contents (false). If no value is specified, the default value is
false. If fileObject is not a directory, any parameters passed to the remove() method are ignored.

Returns
A boolean value indicating whether the file or directory was removed successfully (true) or not (false). Returns
false if the file is open, the path points to a root folder, or the directory is not empty.

Example
The following example shows the creation and removal of a file:

fileObject = new File("sharedobjects/_definst_/userIDs.fso");
fileObject.remove();

File.renameTo()
fileObject.renameTo(name)

Moves or renames a file. If the file is open or the directory points to the root directory, the operation fails. When this
method fails, it invokes the application.onStatus() event handler to report errors.

Availability
Flash Media Server 2

Parameters
name The new name for the file or directory. The name can contain only UTF-8-encoded characters; high byte
values can be encoded by using the URI character-encoding scheme. The specified name is mapped to a system path
by using the mappings specified in the Application.xml file. If the path is invalid or the destination file doesn’t exist,
the operation fails.

Returns
A boolean value indicating whether the file was successfully renamed or moved (true) or not (false).

File.seek()
fileObject.seek(numBytes)

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

56

Skips a specified number of bytes and returns the new file position. This method can accept both positive and
negative parameters.

Availability
Flash Media Server 2

Parameters
numBytes A number indicating the number of bytes to move the file pointer from the current position.

Returns
If the operation is successful, returns the current position in the file; otherwise, returns -1. If the file is closed, the
operation fails and calls application.onStatus() to report a warning. The operation returns -1 when called on a
directory.

File.toString()
fileObject.toString()

Returns the path to the File object.

Availability
Flash Media Server 2

Returns
A string.

Example
The following example outputs the path of the File object myFileObject:

trace(myFileObject.toString());

File.type
fileObject.type

Read-only; a string specifying the type of data or encoding used when a file is opened. The following strings are
supported: "text", "utf8", and "binary". This property is undefined for directories and closed files. If the file is
opened in "text" mode and UTF-8 BOM (Byte Order Mark) is detected, the type property is set to "utf8".

Availability
Flash Media Server 2.0

See also
File.open()

File.write()
fileObject.write(param0, param1,...paramN)

Writes data to a file. The write() method converts each parameter to a string and then writes it to the file without
separators. The file contents are buffered internally. The File.flush() method writes the buffer to the file on disk.
When this method fails, it invokes the application.onStatus() event handler to report errors.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

57

Note: The user or process owner that the server runs under in the operating system must have write permissions or this
call can fail.

Availability
Flash Media Server 2

Parameters
param0, param1,...paramN Parameters to write to the file.

Returns
A boolean value indicating whether the write operation was successful (true) or not (false).

Example
The following example writes "Hello world" at the end of the myFileObject text file:

if (myFileObject.open("text", "append")) {
myFileObject.write("Hello world");

}

File.writeAll()
fileObject.writeAll(array)

Takes an Array object as a parameter and calls the File.writeln() method on each element in the array. The file
contents are buffered internally. The File.flush() method writes the buffer to the file on disk.

Note: The user or process owner that the server runs under in the operating system must have write permissions or this
call can fail.

Availability
Flash Media Server 2

Parameters
array An Array object containing all the elements to write to the file.

Returns
A boolean value indicating whether the write operation was successful (true) or not (false).

File.writeByte()
fileObject.writeByte(number)

Writes a byte to a file. The file contents are buffered internally. The File.flush() method writes the buffer to the
file on disk.

Note: The user or process owner that the server runs under in the operating system must have write permissions or this
call can fail.

Availability
Flash Media Server 2

Parameters
number A number to write.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

58

Returns
A boolean value indicating whether the write operation was successful (true) or not (false).

Example
The following example writes byte 65 to the end of the myFileObject file:

if (myFileObject.open("text","append")) {
myFileObject.writeByte(65);

}

File.writeln()
fileObject.writeln(param0, param1,...paramN)

Writes data to a file and adds a platform-dependent end-of-line character after outputting the last parameter. The
file contents are buffered internally. The File.flush() method writes the buffer to the file on disk.

Note: The user or process owner that the server runs under in the operating system must have write permissions or this
call can fail.

Availability
Flash Media Server 2

Parameters
param0, param1,...paramN Strings to write to the file.

Returns
A boolean value indicating whether the write operation was successful (true) or not (false).

Example
The following example opens a text file for writing and writes a line:

if (fileObj.open("text", "append")) {
fileObj.writeln("This is a line!");

}

LoadVars class
The LoadVars class lets you send all the variables in an object to a specified URL and lets you load all the variables
at a specified URL into an object. It also lets you send specific variables, rather than all variables, which can make
your application more efficient. You can use the LoadVars.onLoad() handler to ensure that your application runs
when data is loaded, and not before.

The LoadVars class works much like the XML class; it uses the load(), send(), and sendAndLoad() methods to
communicate with a server. The main difference between the LoadVars class and the XML class is that LoadVars
transfers ActionScript name-value pairs, rather than an XML Document Object Model (DOM) tree stored in the
XML object. The LoadVars class follows the same security restrictions as the XML class.

Availability
Flash Media Server 2

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

59

Property summary

Method summary

Event handler summary

LoadVars constructor
new LoadVars()

Creates a LoadVars object. You can use the methods of the LoadVars object to send and load data.

Availability
Flash Media Server 2

Example
The following example creates a LoadVars object called my_lv:

var my_lv = new LoadVars();

Property Description

LoadVars.contentType The MIME type sent to the server when you call the LoadVars.send() or
LoadVars.sendAndLoad() method.

LoadVars.loaded A boolean value that indicates whether a LoadVars.load() or
LoadVars.sendAndLoad() operation has completed (true) or not (false).

Method Description

LoadVars.addRequestHeader() Adds or changes HTTP request headers (such as Content-Type or SOAPAction) sent with
POST actions.

LoadVars.decode() Converts the query string to properties of the specified LoadVars object.

LoadVars.getBytesLoaded() Returns the number of bytes loaded from the last or current LoadVars.send() or
LoadVars.sendAndLoad() method call.

LoadVars.getBytesTotal() Returns the number of total bytes loaded during all LoadVars.send() or
LoadVars.sendAndLoad() method calls.

LoadVars.load() Downloads variables from the specified URL, parses the variable data, and places the
resulting variables in the LoadVars object that calls the method.

LoadVars.send() Sends the variables in the specified object to the specified URL.

LoadVars.sendAndLoad() Posts the variables in the specified object to the specified URL.

LoadVars.toString() Returns a string containing all enumerable variables in the specified object, in the MIME
content encoding application/x-www-urlform-encoded.

Event handler Description

LoadVars.onData() Invoked when data has completely downloaded from the server or when an error occurs
while data is downloading from a server.

LoadVars.onHTTPStatus() Invoked when Flash Media Interactive Server receives an HTTP status code from the server.

LoadVars.onLoad() Invoked when a LoadVars.send() or LoadVars.sendAndLoad() operation has
completed.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

60

LoadVars.addRequestHeader()
myLoadVars.addRequestHeader(header, headerValue)

Adds or changes HTTP request headers (such as Content-Type or SOAPAction) sent with POST actions. There are
two possible use cases for this method: you can pass two strings, header and headerValue, or you can pass an array
of strings, alternating header names and header values.

If multiple calls are made to set the same header name, each successive value replaces the value set in the previous
call.

The following standard HTTP headers cannot be added or changed with this method: Accept-Ranges, Age, Allow,
Allowed, Connection, Content-Length, Content-Location, Content-Range, ETag, Host, Last-Modified, Locations,
Max-Forwards, Proxy-Authenticate, Proxy-Authorization, Public, Range, Retry-After, Server, TE, Trailer, Transfer-
Encoding, Upgrade, URI, Vary, Via, Warning, and WWW-Authenticate.

Availability
Flash Media Server 2

Parameters
header A string or an array of strings that represents an HTTP request header name.

headerValue A string that represents the value associated with header.

Example
The following example adds a custom HTTP header named SOAPAction with a value of Foo to the my_lv object:

var my_lv = new LoadVars();
my_lv.addRequestHeader("SOAPAction", "'Foo'");

The following example creates an array named headers that contains two alternating HTTP headers and their
associated values. The array is passed as a parameter to the addRequestHeader() method.

var my_lv = new LoadVars();
var headers = ["Content-Type", "text/plain", "X-ClientAppVersion", "2.0"];
my_lv.addRequestHeader(headers);

The following example creates a new LoadVars object that adds a request header called FLASH-UUID. The header
contains a variable that the server can check.

var my_lv = new LoadVars();
my_lv.addRequestHeader("FLASH-UUID", "41472");
my_lv.name = "Mort";
my_lv.age = 26;
my_lv.send("http://flash-mx.com/mm/cgivars.cfm", "_blank", "POST");

LoadVars.contentType
myLoadVars.contentType

The MIME type sent to the server when you call the LoadVars.send() or LoadVars.sendAndLoad() method. The
default is application/x-www-urlform-encoded.

Availability
Flash Media Server 2

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

61

Example
The following example creates a LoadVars object and displays the default content type of the data that is sent to the
server:

application.onConnect = function(client){
this.acceptConnection(client);
var my_lv = new LoadVars();
trace(my_lv.contentType);

};

// Output to Live Log: application/x-www-form-urlencoded

LoadVars.decode()
myLoadVars.decode(queryString)

Converts the query string to properties of the specified LoadVars object. This method is used internally by the
LoadVars.onData() event handler. Most users do not need to call this method directly. If you override the
LoadVars.onData() event handler, you can explicitly call LoadVars.decode() to parse a string of variables.

Availability
Flash Media Server 2

Parameters
queryString A URL-encoded query string containing name-value pairs.

Example
The following example traces the three variables:

application.onConnect = function(client){
this.acceptConnection(client);
// Create a new LoadVars object.
var my_lv = new LoadVars();
//Convert the variable string to properties.
my_lv.decode("name=Mort&score=250000");
trace(my_lv.toString());
// Iterate over properties in my_lv.
for (var prop in my_lv) {

trace(prop+" -> "+my_lv[prop]);
}

};

The following is output to the Live Log panel in the Administration Console:

name=Mort&score=250000
name -> Mort
score -> 250000
contentType -> application/x-www-form-urlencoded
loaded -> false

LoadVars.getBytesLoaded()
myLoadVars.getByesLoaded()

Returns the number of bytes loaded from the last or current LoadVars.load() or LoadVars.sendAndLoad()
method call. The value of the contentType property does not affect the value of getBytesLoaded().

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

62

Availability
Flash Media Server 2

Returns
A number.

See also
LoadVars.getBytesTotal()

LoadVars.getBytesTotal()
myLoadVars.getBytesTotal()

Returns the total number of bytes loaded into an object during allLoadVars.load() or LoadVars.sendAndLoad()
LoadVars.load() or LoadVars.sendAndLoad()method calls. Each time a call to load() or sendAndLoad() is
issued, the getBytesLoaded() method is reset, but the getBytesTotal() method continues to grow.

The value of the contentType property does not affect the value of getBytesLoaded().

Availability
Flash Media Server 2

Returns
A number. Returns undefined if no load operation is in progress or if a load operation has not been initiated.
Returns undefined if the number of total bytes can’t be determined—for example, if the download was initiated but
the server did not transmit an HTTP content length.

See also
LoadVars.getBytesLoaded()

LoadVars.load()
myLoadVars.load(url)

Downloads variables from the specified URL, parses the variable data, and places the resulting variables into the
LoadVars object that calls the method. You can load variables from a remote URL or from a URL in the local file
system; the same encoding standards apply to both.

Any properties in the myLoadVars object that have the same names as downloaded variables are overwritten. The
downloaded data must be in the MIME content type and be application/x-www-urlform-encoded.

The LoadVars.load() method call is asynchronous.

Availability
Flash Media Server 2

Parameters
url A string indicating the URL from which to download variables.

Returns
A boolean value indicating success (true) or failure (false).

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

63

Example
The following code defines an onLoad() handler function that signals when data is returned:

application.onConnect = function(client){
this.acceptConnection(client);
var my_lv = new LoadVars();
my_lv.onLoad = function(success) {

if (success) {
trace(this.toString());

} else {
trace("Error loading/parsing LoadVars.");

}
};
my_lv.load("http://www.helpexamples.com/flash/params.txt");

};

LoadVars.loaded
myLoadVars.loaded

A boolean value that indicates whether a LoadVars.load() or LoadVars.sendAndLoad() operation has
completed (true) or not (false).

Availability
Flash Media Server 2

Example
The following example loads a text file and writes information to the log file when the operation is complete:

var my_lv = new LoadVars();
my_lv.onLoad = function(success) {
trace("LoadVars loaded successfully: "+this.loaded);
};
my_lv.load("http://www.helpexamples.com/flash/params.txt");

See also
LoadVars.onLoad()

LoadVars.onData()
myLoadVars.onData(src){}

Invoked when data has completely downloaded from the server or when an error occurs while data is downloading
from a server.

Availability
Flash Media Server 2

Parameters
src A string or undefined; the raw (unparsed) data from a LoadVars.load() or LoadVars.sendAndLoad()
method call.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

64

Details
This handler is invoked before the data is parsed and can be used to call a custom parsing routine instead of the one
built in to Flash Player. The value of the src parameter that is passed to the function assigned to
LoadVars.onData() can be either undefined or a string that contains the URL-encoded name-value pairs
downloaded from the server. If the src parameter is undefined, an error occurred while downloading the data from
the server.

The default implementation of LoadVars.onData() invokes LoadVars.onLoad(). You can override this default
implementation by assigning a custom function to LoadVars.onData(), but LoadVars.onLoad() is not called
unless you call it in your implementation of LoadVars.onData().

Example
The following example loads a text file and traces the content when the operation is complete:

var my_lv = new LoadVars();
my_lv.onData = function(src) {
if (src == undefined) {
trace("Error loading content.");
return;
}

trace(src);
};
my_lv.load("content.txt", my_lv, "GET");

LoadVars.onHTTPStatus()
myLoadVars.onHTTPStatus(httpStatus){}

Invoked when Flash Media Interactive Server receives an HTTP status code from the server. This handler lets you
capture and act on HTTP status codes.

Availability
Flash Media Server 2

Parameters
httpStatus A number; the HTTP status code returned by the server. For example, a value of 404 indicates that
the server has not found a match for the requested URI. HTTP status codes can be found in sections 10.4 and 10.5
of the HTTP specification.

Details
The onHTTPStatus() handler is invoked before onData(), which triggers calls to onLoad() with a value of
undefined if the load fails. After onHTTPStatus() is triggered, onData() is always triggered, whether or not you
override onHTTPStatus(). To best use the onHTTPStatus() handler, you should write a function to catch the result
of the onHTTPStatus() call; you can then use the result in your onData() and onLoad() handlers. If
onHTTPStatus() is not invoked, this indicates that Flash Media Interactive Server did not try to make the URL
request.

If Flash Media Interactive Server cannot get a status code, or if it cannot communicate with the server, the default
value of 0 is passed to your ActionScript code.

ftp://ftp.isi.edu/in-notes/rfc2616.txt

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

65

Example
The following example shows how to use onHTTPStatus() to help with debugging. The example collects HTTP
status codes and assigns their value and type to an instance of the LoadVars object. (Notice that this example creates
the instance members this.httpStatus and this.httpStatusType at runtime.) The onData() handler uses
these instance members to trace information about the HTTP response that can be useful in debugging.

var myLoadVars = new LoadVars();

myLoadVars.onHTTPStatus = function(httpStatus) {
this.httpStatus = httpStatus;
if(httpStatus < 100) {

this.httpStatusType = "flashError";
}
else if(httpStatus < 200) {

this.httpStatusType = "informational";
}
else if(httpStatus < 300) {

this.httpStatusType = "successful";
}
else if(httpStatus < 400) {

this.httpStatusType = "redirection";
}
else if(httpStatus < 500) {

this.httpStatusType = "clientError";
}
else if(httpStatus < 600) {

this.httpStatusType = "serverError";
}

}

myLoadVars.onData = function(src) {
trace(">> " + this.httpStatusType + ": " + this.httpStatus);
if(src != undefined) {

this.decode(src);
this.loaded = true;
this.onLoad(true);

}
else {

this.onLoad(false);
}

}

myLoadVars.onLoad = function(success) {}

myLoadVars.load("http://weblogs.macromedia.com/mxna/flashservices/getMostRecentPosts.cfm")
;

LoadVars.onLoad()
myLoadVars.onLoad(success){}

Invoked when a LoadVars.load() or LoadVars.sendAndLoad() operation has completed. If the variables load
successfully, the success parameter is true. If the variables were not received, or if an error occurred in receiving
the response from the server, the success parameter is false.

If the success parameter is true, the myLoadVars object is populated with variables downloaded by the
LoadVars.load() or LoadVars.sendAndLoad() operation, and these variables are available when the onLoad()
handler is invoked.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

66

Availability
Flash Media Server 2

Parameters
success A boolean value indicating whether the LoadVars.load() operation ended in success (true) or failure
(false).

Example
The following example creates a new LoadVars object, attempts to load variables into it from a remote URL, and
prints the result:

myLoadVars = new LoadVars();
myLoadVars.onLoad = function(result){

trace("myLoadVars load success is " + result);
}
myLoadVars.load("http://www.someurl.com/somedata.txt");

LoadVars.send()
myLoadVars.send(url [, target, method])

Sends the variables in the myLoadVars object to the specified URL. All enumerable variables in the myLoadVars
object are concatenated into a string that is posted to the URL by using the HTTP POST method.

The MIME content type sent in the HTTP request headers is the value of LoadVars.contentType.

Availability
Flash Media Server 2

Parameters
url A string; the URL to which to upload variables.

target A File object. If you use this optional parameter, any returned data is output to the specified File object. If
this parameter is omitted, the response is discarded.

method A string indicating the GET or POST method of the HTTP protocol. The default value is POST. This
parameter is optional.

Returns
A boolean value indicating success (true) or failure (false).

See also
LoadVars.sendAndLoad()

LoadVars.sendAndLoad()
myLoadVars.sendAndLoad(url, target[, method])

Posts the variables in the myLoadVars object to the specified URL. The server response is downloaded and parsed
as variable data, and the resulting variables are placed in the target object. Variables are posted in the same way as
LoadVars.send(). Variables are downloaded into target in the same way as LoadVars.load().

Availability
Flash Media Server 2

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

67

Parameters
url A string; the URL to which to upload variables.

target The LoadVars object that receives the downloaded variables.

method A string; the GET or POST method of the HTTP protocol. The default value is POST. This parameter is
optional.

Returns
A boolean value indicating success (true) or failure (false).

LoadVars.toString()
myLoadVars.toString()

Returns a string containing all enumerable variables in myLoadVars, in the MIME content encoding application/x-
www-form-urlencoded.

Availability
Flash Media Server 2

Returns
A string.

Example
The following example instantiates a new LoadVars() object, creates two properties, and uses toString() to return
a string containing both properties in URL-encoded format:

var my_lv = new LoadVars();
my_lv.name = "Gary";
my_lv.age = 26;
trace (my_lv.toString());
//output: age=26&name=Gary

Log class
The Log class lets you create a Log object that can be passed as an optional parameter to the constructor for the
WebService class. For more information, see WebService constructor.

Availability
Flash Media Server 2

Event handler summary

Log constructor
new Log([logLevel][, logName])

Creates a Log object that can be passed as an optional parameter to the constructor for the WebService class.

Event handler Description

Log.onLog() Invoked when a log message is sent to a log.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

68

Availability
Flash Media Server 2

Parameters
logLevel One of the following values (if not set explicitly, the level defaults to Log.BRIEF):

logName An optional parameter that can be used to distinguish between multiple logs that are running simulta-
neously to the same output.

Returns
A Log object.

Example
The following example creates a new instance of the Log class:

newLog = new Log();

Log.onLog()
myLog.onLog(message){}

Invoked when a log message is sent to a log.

Availability
Flash Media Server 2

Parameters
message A log message.

NetConnection class
The server-side NetConnection class lets you create a two-way connection between a Flash Media Server application
instance and an application server, another Flash Media Server, or another Flash Media Server application instance
on the same server. You can use NetConnection objects to create powerful applications; for example, you can get
weather information from an application server or share an application load with other servers that are running
Flash Media Server or application instances.

Availability
Flash Communication Server 1

Value Description

Log.BRIEF Primary life cycle event and error notifications are received.

Log.VERBOSE All life cycle event and error notifications are received.

Log.DEBUG Metrics and fine-grained events and errors are received.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

69

Property summary

Method summary

Event handler summary

NetConnection constructor
new NetConnection()

Creates a new instance of the NetConnection class.

Availability
Flash Communication Server 1.

Returns
A NetConnection object.

Example
The following example creates a new instance of the NetConnection class:

newNC = new NetConnection();

NetConnection.addHeader()
nc.addHeader(name, mustUnderstand, object)

Adds a context header to the Action Message Format (AMF) packet structure. This header is sent with every future
AMF packet. If you call addHeader() by using the same name, the new header replaces the existing header, and the
new header persists for the duration of the NetConnection object. You can remove a header by calling addHeader()
with the name of the header to remove and an undefined object.

Availability
Flash Communication Server 1

Property Description

NetConnection.isConnected Read-only; a boolean value indicating whether a connection has been made.

NetConnection.objectEncoding The Action Message Format (AMF) version used to pass binary data between two servers.

NetConnection.uri Read-only; a string indicating the URI parameter of the NetConnection.connect()
method.

Method Description

NetConnection.addHeader() Adds a context header to the Action Message Format (AMF) packet structure.

NetConnection.call() Invokes a command or method on another Flash Media Server or an application server to
which the application instance is connected.

NetConnection.close() Closes the connection with the server.

NetConnection.connect() Connects to another Flash Media Server or to a Flash Remoting server such as Adobe Cold-
Fusion.

Event handler Description

NetConnection.onStatus() Invoked every time the status of the NetConnection object changes.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

70

Parameters
name A string; identifies the header and the ActionScript object data associated with it.

mustUnderstand A boolean; true indicates that the server must understand and process this header before it
handles any of the following headers or messages.

object An Object.

Example
The following example creates a new NetConnection instance, nc, and connects to an application at web server
www.foo.com that is listening at port 1929. This application dispatches the service /blag/SomeCoolService. The last
line of code adds a header called foo.

nc=new NetConnection();
nc.connect("http://www.foo.com:1929/blag/SomeCoolService");
nc.addHeader("foo", true, new Foo());

NetConnection.call()
nc.call(methodName, [resultObj [, p1, ..., pN])

Invokes a command or method on another Flash Media Server or an application server to which the application
instance is connected. The NetConnection.call() method on the server works the same way as the
NetConnection.call() method on the client: it invokes a command on a remote server.

Note: To call a method on a client from a server, use the Client.call() method.

Availability
Flash Communication Server 1

Parameters
methodName A string indicating a method specified in the form "[objectPath/]method". For example, the
someObj/doSomething command tells the remote server to invoke the clientObj.someObj.doSomething()
method, with all the p1, ..., pN parameters. If the object path is missing, clientObj.doSomething() is invoked
on the remote server.

resultObj An Object. This optional parameter is used to handle return values from the server. The result object
can be any object that you defined and can have two defined methods to handle the returned result: onResult()
and onStatus(). If an error is returned as the result, onStatus() is invoked; otherwise, onResult() is invoked.

p1, ..., pN Optional parameters that can be of any ActionScript type, including a reference to another Action-
Script object. These parameters are passed to the methodName parameter when the method is executed on the remote
application server.

Returns
For RTMP connections, returns a boolean value of true if a call to methodName is sent to the client; otherwise,
false. For application server connections, it always returns true.

Example
The following example uses RTMP to execute a call from one Flash Media Server to another Flash Media Server. The
code makes a connection to the App1 application on server 2 and then invokes the Sum() method on server 2:

nc1.connect("rtmp://server2.mydomain.com/App1", "svr2",);
nc1.call("Sum", new Result(), 3, 6);

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

71

The following Server-Side ActionScript code is on server 2. When the client is connecting, this code checks to see
whether it has a parameter that is equal to svr1. If the client has that parameter, the Sum() method is defined so that
when the method is called from svr1, svr2 can respond with the appropriate method:

application.onConnect = function(clientObj){
if(arg1 == "svr1"){

clientObj.Sum = function(p1, p2){
return p1 + p2;

}
}
return true;

};

The following example uses an Action Message Format (AMF) request to make a call to an application server. This
allows Flash Media Server to connect to an application server and then invoke the quote() method. The Java
adaptor dispatches the call by using the identifier to the left of the dot as the class name and the identifier to the right
of the dot as a method of the class.

nc = new NetConnection;
nc.connect("http://www.xyz.com/java");
nc.call("myPackage.quote", new Result());

NetConnection.close()
nc.close()

Closes the connection with the server. After you close the connection, you can reuse the NetConnection instance
and reconnect to an old application or connect to a new one.

Note: The NetConnection.close() method has no effect on HTTP connections.

Availability
Flash Communication Server 1

NetConnection.connect()
nc.connect(URI, [p1, ..., pN])

Connects to another Flash Media Server or to a Flash Remoting server such as Adobe ColdFusion.

Call NetConnection.connect() to connect to an application server running a Flash Remoting gateway over HTTP
or to connect to another Flash Media Server for sharing audio, video, and data over one of the following versions of
RTMP:

It is good practice to write an application.onStatus() callback function and check the
NetConnection.isConnected property for RTMP connections to see whether a successful connection was made.
For Action Message Format (AMF) connections, check NetConnection.onStatus().

Availability
Flash Communication Server 1

Protocol Description

RTMP Real-Time Messaging Protocol

RTMPS Real-Time Messaging Protocol over SSL

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

72

Parameters
URI A string indicating a URI to connect to. URI has the following format:

[protocol://]host[:port]/appName[/instanceName]

The following are legal URIs:

http://appServer.mydomain.com/webApp
rtmp://rtserver.mydomain.com/realtimeApp
rtmps://rtserver.mydomain.com/secureApp
rtmp://localhost/realtimeApp
rtmp:/realtimeApp

p1, ..., pN Optional parameters that can be of any ActionScript type, including references to other ActionScript
objects. These parameters are sent as connection parameters to the application.onConnect() event handler for
RTMP connections. For AMF connections to application servers, RTMP parameters are ignored.

Returns
For RTMP connections, a boolean value of true for success; otherwise, false. For AMF connections to application
servers, true is always returned.

Example
The following example creates an RTMP connection to an application instance on Flash Media Server:

nc = new NetConnection();
nc.connect("rtmp://tc.foo.com/myApp/myConn");

NetConnection.isConnected
nc.isConnected

Read-only; a boolean value indicating whether a connection has been made. It is set to true if there is a connection
to the server. It’s a good idea to check this property value in an onStatus() callback function. This property is always
true for AMF connections to application servers.

Availability
Flash Communication Server 1

Example
The following example uses NetConnection.isConnected in an onStatus() handler to check whether a
connection has been made:

nc = new NetConnection();
nc.connect("rtmp://tc.foo.com/myApp");
nc.onStatus = function(infoObj){

if (info.code == "NetConnection.Connect.Success" && nc.isConnected){
trace("We are connected");

}
};

NetConnection.objectEncoding
nc.objectEncoding

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

73

The Action Message Format (AMF) version used to pass binary data between two servers. The possible values are 3
(ActionScript 3.0 format) and 0 (ActionScript 1.0 and ActionScript 2.0 format). The default value is 3. When Flash
Media Server acts as a client trying to connect to another server, the encoding of the client should match the
encoding of the remote server.

The value of objectEncoding is determined dynamically according to the following rules when the server receives
a NetConnection.onStatus() event with the code property NetConnection.Connect.Success:

• If the onStatus() info object contains an objectEncoding property, its value is used.

• If the onStatus() info object does not contain an objectEncoding property, 0 is assumed even if the
connecting server has set objectEncoding to 3.

• Once the NetConnection instance is connected, the objectEncoding property is read-only.

These rules turn Flash Media Server 3 into an AMF0 client when it connects to a remote Flash Media Server version
2 or earlier (which only support AMF0).

Note: The server always serializes data in AMF0 while executing Flash Remoting functions.

Availability
Flash Media Interactive Server 3 and Flash Media Development Server 3

NetConnection.onStatus()
nc.onStatus = function(infoObject) {}

Invoked every time the status of the NetConnection object changes. For example, if the connection with the server
is lost in an RTMP connection, the NetConnection.isConnected property is set to false, and
NetConnection.onStatus() is invoked with a status message of NetConnection.Connect.Closed. For AMF
connections, NetConnection.onStatus() is used only to indicate a failed connection. Use this event handler to
check for connectivity.

Availability
Flash Communication Server 1

Parameters
infoObject An Object with properties that provide information about the status of a NetConnection information
object. This parameter is optional, but it is usually used. The NetConnection information object contains the
following properties:

The following table contains the code and level property values and their meanings:

Property Meaning

code A string identifying the event that occurred.

description A string containing detailed information about the code. Not every information object
includes this property.

level A string indicating the severity of the event.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

74

Example
The following example defines a function for the onStatus() handler that outputs messages to indicate whether the
connection was successful:

nc = new NetConnection();
nc.onStatus = function(info){

if (info.code == "NetConnection.Connect.Success") {
_root.gotoAndStop(2);

} else {
if (! nc.isConnected){

_root.gotoAndStop(1);
}

}
};

NetConnection.uri
nc.uri

Read-only; a string indicating the URI parameter of the NetConnection.connect() method. This property is set
to null before a call to NetConnection.connect() or after a call to NetConnection.close().

Availability
Flash Communication Server 1

NetStream class
Opens a one-way streaming connection between Flash Media Interactive Server and a remote Flash Media Inter-
active Server through a NetConnection object. A NetStream object is a channel inside a NetConnection object; call
NetStream.publish() to publish data over this channel. Unlike a client-side NetStream object, a server-side
NetStream object can only publish data; it cannot subscribe to a publishing stream or play a recorded stream.

Use the NetStream class to scale live broadcasting applications to support more clients. Flash Media Interactive
Server can support only a certain number of subscribing clients. To increase that number, you can use the NetStream
class to move traffic to remote servers while still maintaining only one client-to-server connection.

Code Level Meaning

NetConnection.Call.Failed error The NetConnection.call() method was not able to invoke the server-
side method or command.

NetConnection.Connect.AppShutdown error The application has been shut down (for example, if the application is out of
memory resources and must shut down to prevent the server from crashing)
or the server has shut down.

NetConnection.Connect.Closed status The connection was closed successfully.

NetConnection.Connect.Failed error The connection attempt failed.

NetConnection.Connect.Rejected error The client does not have permission to connect to the application, or the
application name specified during the connection attempt was not found
on the server. This information object also has an application property
that contains the value returned by
application.rejectConnection().

NetConnection.Connect.Success status The connection attempt succeeded.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

75

The following steps describe the workflow for publishing a stream to a remote Flash Media Interactive Server:

1 Call the NetConnection constructor, nc = new NetConnection, to create a NetConnection object.

2 Call nc.connect("rtmp://serverName/appName/appInstanceName") to connect to an application on a
remote Flash Media Interactive Server.

Note: You cannot use RTMPT, RTMPE, or RTMPTE when connecting to a remote server.

3 Call the NetStream constructor, ns = new NetStream(nc), to create a data stream over the connection.

4 Call ns.publish("myStream") to give the stream a unique name and send data over the stream to the remote
server. You can also record the data as you publish it, so that users can play it back later.

5 Clients that subscribe to this stream connect to the same application on the remote server (in a client-side script),
NetConnection.connect("rtmp://serverName/appName/appInstanceName"), and then call
NetStream.play("myStream") with the same stream name.

Availability
Flash Media Interactive Server 3 and Flash Media Development Server 3

Property summary

Method summary

Event handler summary

NetStream class constructor
ns = new NetStream(connection)

Creates a stream that can be used for publishing (sending) data through the specified NetConnection object.
However, you can create multiple streams that run simultaneously over the same connection.

Availability
Flash Media Interactive Server 3 and Flash Media Development Server 3

Parameters
connection A NetConnection object.

Property Description

NetStream.bufferTime Read-only; indicates the number of seconds assigned to the buffer by the
NetStream.setBufferTime() method.

NetStream.time Read-only; indicates the number of seconds the stream has been publishing.

Method Description

NetStream.attach() Attaches a data source to the NetStream object.

NetStream.publish() Publishes a stream to a remote server.

NetStream.send() Broadcasts a data message over a stream.

NetStream.setBufferTime() Sets the size of the outgoing buffer in seconds.

Event handler Description

NetStream.onStatus() Invoked every time a status change or error occurs in a NetStream Object.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

76

Returns
A NetStream object if successful; otherwise, null.

Example
nc = new NetConnection();
nc.connect("rtmp://xyz.com/myApp");
ns = new NetStream(nc);

NetStream.attach()
ns.attach(stream)

Attaches a data source to the NetStream object.

Availability
Flash Media Interactive Server 3 and Flash Media Development Server 3

Parameters
stream A Stream object. If you pass false, the attached Stream object detaches from the NetStream object.

Returns
A boolean value. If the attached object is a valid data source, true; otherwise, false.

Example
myStream = Stream.get("foo");
ns = new NetStream(nc);
ns.attach(myStream);

NetStream.bufferTime
ns.bufferTime

Read-only; indicates the number of seconds assigned to the buffer by the NetStream.setBufferTime() method.

Availability
Flash Media Interactive Server 3 and Flash Media Development Server 3

NetStream.onStatus()
ns.onStatus = function(infoObject){})

Invoked every time a status change or error occurs in a NetStream object. The remote server can accept or reject a
call to NetStream.publish().

Availability
Flash Media Interactive Server 3 and Flash Media Development Server 3

Parameters
infoObject An Object with code and level properties that provide information about the status of a NetStream
call. Both properties are strings.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

77

Example
ns = new NetStream(nc);
ns.onStatus = function(info){

if (info.code == "NetStream.Publish.Start"){
trace("It is now publishing");

}
ns.publish("foo", "live");
}

NetStream.publish()
ns.publish(name, howToPublish)

Publishes a stream to a remote server. If the stream has been published by another client, the publish() call can fail
when it reaches the remote server. Check the status in the NetStream.onStatus() handler to make sure that the
publisher has been accepted.

Availability
Flash Media Interactive Server 3 and Flash Media Development Server 3

Parameters
name A string identifying the stream to publish. If you pass false, the stream stops publishing.

howToPublish A string specifying how to publish the stream. Valid values are "record", "append", and "live".
The default value is "live". This parameter is optional.

If you pass "record", the live data is recorded to a file called name.flv. The file is stored on the remote server
associated with the NetConnection object. If the file already exists, it is overwritten.

If you pass "append", the live data is appended to a file called name.flv. The file is stored on the remote server
associated with the NetConnection object. If a file called name.flv is not found, it is created.

If you omit this parameter or pass "live", live data is published but not recorded. If a file called name.flv exists on
the remote server, it is deleted.

Note: If name.flv is read-only, live data is published and name.flv is not deleted.

Example
application.onPublish = function(client, myStream){

nc = new NetConnection();
nc.connect("rtmp://example.com/myApp");
ns = new NetStream(nc);

Code property Level property Description

NetStream.Publish.Start status An attempt to publish was successful.

NetStream.Publish.BadName error An attempt was made to publish to a stream that is already being
published by someone else.

NetStream.Unpublish.Success status An attempt to stop publishing a stream was successful.

NetStream.Record.Start status Recording was started.

NetStream.Record.Stop status Recording was stopped.

NetStream.Record.NoAccess status An attempt was made to record a read-only stream.

NetStream.Record.Failed error An attempt to record a stream failed.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

78

ns.attach(myStream);
ns.publish(myStream.name, "live");

};

NetStream.send()
ns.send(handlerName, [p1, ..., pN])

Broadcasts a data message over a stream.

Availability
Flash Media Interactive Server 3 and Flash Media Development Server 3

Parameters
handlerName A string that identifies the name of the handler to receive the message.

p1, ..., pN Optional parameters of any type. They are serialized and sent over the connection. The receiving
handler receives them in the same order.

Returns
A boolean value; true if the data message is dispatched; otherwise, false.

Example
The following client-side code broadcasts the message “Hello world” to the foo handler function on each client
that is connected to myApp:

nc = new NetConnection();
nc.connect("rtmp://xyz.com/myApp");
ns = new NetStream(nc);
ns.send("foo", "Hello world");

NetStream.setBufferTime()
ns.setBufferTime(bufferTime)

Sets the size of the outgoing buffer in seconds. If publishing, it controls the buffer in the local server.

Availability
Flash Media Interactive Server 3 and Flash Media Development Server 3

Parameters
bufferTime A number indicating the size of the outgoing buffer in seconds.

Example
nc = new NetConnection();
nc.connect("rtmp://xyz.com/myApp");
ns = new NetStream(nc);
ns.setBufferTime(2);

NetStream.time
ns.time

Read-only; indicates the number of seconds the stream has been publishing. This is a good indication of whether
data is flowing from the source that has been set in a call to the NetStream.attach() method.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

79

Availability
Flash Media Interactive Server 3 and Flash Media Development Server 3

SharedObject class
The SharedObject class lets you store data on the server and share data between multiple client applications in real
time. Shared objects can be temporary, or they can persist on the server after an application has closed; you can
consider shared objects as real-time data transfer devices.

Note: This entry explains the server-side SharedObject class. You can also create shared objects with the client-side
SharedObject class.

The following list describes common ways to use shared objects in Server-Side ActionScript:

1 Storing and sharing data on a server. A shared object can store data on the server for other clients to retrieve. For
example, you can open a remote shared object, such as a phone list, that is persistent on the server. Whenever a client
makes a change to the shared object, the revised data is available to all clients that are currently connected to the
object or that connect to it later. If the object is also persistent locally and a client changes the data while not
connected to the server, the changes are copied to the remote shared object the next time the client connects to the
object.

2 Sharing data in real time. A shared object can share data among multiple clients in real time. For example, you
can open a remote shared object that stores real-time data that is visible to all clients connected to the object, such
as a list of users connected to a chat room. When a user enters or leaves the chat room, the object is updated and all
clients that are connected to the object see the revised list of chat-room users.

It is important to understand the following information about using shared objects in Server-Side ActionScript:

• The Server-Side ActionScript method SharedObject.get() creates remote shared objects; there is no server-
side method that creates local shared objects. Local shared objects are stored in memory, unless they’re persistent, in
which case they are stored in .sol files.

• Remote shared objects that are stored on the server have the file extension .fso and are stored in a subdirectory
of the application that created them. Remote shared objects on the client have the file extension .sor and are also
stored in a subdirectory of the application that created them.

• Server-side shared objects can be nonpersistent (that is, they exist for the duration of an application instance) or
persistent (that is, they are stored on the server after an application closes).

• To create a persistent shared object, set the persistence parameter of the SharedObject.get() method to
true. Persistent shared objects let you maintain an application’s state.

3 Every remote shared object is identified by a unique name and contains a list of name-value pairs, called
properties, like any other ActionScript object. A name must be a unique string and a value can be any ActionScript
data type.

Note: Unlike client-side shared objects, server-side shared objects do not have a data property.

• To get the value of a server-side shared object property, call SharedObject.getProperty(). To set the value of
a server-side shared object property, call SharedObject.setProperty().

• To clear a shared object, call the SharedObject.clear()method; to delete multiple shared objects, call the
application.clearSharedObjects() method.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

80

• Server-side shared objects can be owned by the current application instance or by another application instance.
The other application instance can be on the same server or on a different server. References to shared objects that
are owned by a different application instance are called proxied shared objects.

If you write a server-side script that modifies multiple properties, you can prevent other clients from modifying the
object during the update by calling the SharedObject.lock() method before updating the object. Then you can
call SharedObject.unlock() to commit the changes and allow other changes to be made. Call
SharedObject.mark() to deliver change events in groups within the lock() and unlock() methods.

When you get a reference to a proxied shared object, any changes made to the object are sent to the instance that
owns the object. The success or failure of any changes is sent by using the SharedObject.onSync() event handler,
if it is defined.

The SharedObject.lock() and SharedObject.unlock() methods cannot lock or unlock proxied shared objects.

Availability
Flash Communication Server 1

Property summary

Method summary

Property Description

SharedObject.autoCommit A boolean value indicating whether the server periodically stores all persistent shared
objects (true) or not (false).

SharedObject.isDirty Read-only; a boolean value indicating whether the persistent shared object has been modi-
fied since the last time it was stored (true) or not (false).

SharedObject.name Read-only; the name of a shared object.

SharedObject.resyncDepth An integer that indicates when the deleted values of a shared object should be permanently
deleted.

SharedObject.version Read-only; the current version number of a shared object.

Method Description

SharedObject.clear() Deletes all the properties of a single shared object and sends a clear event to all clients that
subscribe to a persistent shared object.

SharedObject.close() Detaches a reference from a shared object.

SharedObject.commit() Static; stores either a specific persistent shared object instance or all persistent shared
object instances with an isDirty property whose value is true.

SharedObject.flush() Saves the current state of a persistent shared object.

SharedObject.get() Static; creates a shared object or returns a reference to an existing shared object.

SharedObject.getProperty() Retrieves the value of a named property in a shared object.

SharedObject.getPropertyNames() Enumerates all the property names for a given shared object.

SharedObject.lock() Locks a shared object.

SharedObject.mark() Delivers all change events to a subscribing client as a single message.

SharedObject.purge() Causes the server to remove all deleted properties that are older than the specified version.

SharedObject.send() Executes a method in a client-side script.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

81

Event handler summary

SharedObject.autoCommit
so.autoCommit

A boolean value indicating whether the server periodically stores all persistent shared objects (true) or not (false).
If autoCommit is false, the application must call SharedObject.commit() to save the shared object; otherwise,
the data is lost.

This property is true by default. To override the default, specify the initial state by using the following configuration
key in the Application.xml file, as shown in the following example:

<SharedObjManager>
<AutoCommit>false</AutoCommit>

</SharedObjManager>

Availability
Flash Media Server 2

SharedObject.clear()
so.clear()

Deletes all the properties of a single shared object and sends a clear event to all clients that subscribe to a persistent
shared object. The persistent data object is also removed from a persistent shared object.

Availability
Flash Communication Server 1

Returns
Returns true if successful; otherwise, false.

See also
application.clearSharedObjects()

SharedObject.close()
so.close()

SharedObject.setProperty() Updates the value of a property in a shared object.

SharedObject.size() Returns the total number of valid properties in a shared object.

SharedObject.unlock() Allows other clients to update the shared object.

Event handler Description

SharedObject.handlerName() An event handler invoked when a shared object receives a message with the same name
from the client-side SharedObject.send() method.

SharedObject.onStatus() Invoked when errors, warnings, and status messages associated with either a local instance
of a shared object or a persistent shared object occur.

SharedObject.onSync() Invoked when a shared object changes.

Method Description

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

82

Detaches a reference from a shared object. A call to the SharedObject.get() method returns a reference to a
shared object instance. The reference is valid until the variable that holds the reference is no longer in use and the
script is garbage collected. To destroy a reference immediately, you can call SharedObject.close(). You can use
SharedObject.close() when you no longer want to proxy a shared object.

Availability
Flash Communication Server 1

Example
In the following example, so is attached as a reference to shared object foo. When you call so.close(), you detach
the reference so from the shared object foo.

so = SharedObject.get("foo");
// Insert code here.

so.close();

See also
SharedObject.get()

SharedObject.commit()
so.commit([name])

Static; stores either a specific persistent shared object instance or all persistent shared object instances with an
isDirty property whose value is true. Use this method if the SharedObject.autoCommit property is false and
you need to manage when a shared object is stored locally.

Availability
Flash Media Server 2

Parameters
name A string indicating the name of the persistent shared object instance to store. If no name is specified, or if an
empty string is passed, all persistent shared objects are stored. This parameter is optional.

Returns
A boolean value indicating success (true) or failure (false).

Example
The following code commits all dirty shared objects to local storage when the application stops:

application.onAppStop = function (info){
// Insert code here.
SharedObject.commit();

}

SharedObject.flush()
so.flush()

Saves the current state of a persistent shared object. Invokes the SharedObject.onStatus() handler and passes it
an object that contains information about the success or failure of the call.

Availability
Flash Communication Server 1

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

83

Returns
A boolean value of true if successful; otherwise, false.

Example
The following example places a reference to the shared object foo in the variable so. It then locks the shared object
instance so that no one can make any changes to it and saves the shared object by calling so.flush(). After the
shared object is saved, it is unlocked so that further changes can be made.

var so = SharedObject.get("foo", true);
so.lock();
// Insert code here that operates on the shared object.
so.flush();
so.unlock();

SharedObject.get()
SharedObject.get(name, persistence [, netConnection])

Static; creates a shared object or returns a reference to an existing shared object. To perform any operation on a
shared object, the server-side script must get a reference to the shared object by using the SharedObject.get()
method. If the requested object is not found, a new instance is created.

Availability
Flash Communication Server 1

Parameters
name Name of the shared object instance to return.

persistence A boolean value: true for a persistent shared object; false for a nonpersistent shared object. If no
value is specified, the default value is false.

netConnection A NetConnection object that represents a connection to an application instance. You can pass this
parameter to get a reference to a shared object on another server or a shared object that is owned by another appli-
cation instance. All update notifications for the shared object specified by the name parameter are proxied to this
instance, and the remote instance notifies the local instance when a persistent shared object changes. The NetCon-
nection object that is used as the netConnection parameter does not need to be connected when you call
SharedObject.get(). The server connects to the remote shared object when the NetConnection state changes to
connected. This parameter is optional.

Returns
A reference to an instance of the SharedObject class.

Details
There are two types of shared objects, persistent and nonpersistent, and they have separate namespaces. This means
that a persistent and a nonpersistent shared object can have the same name and exist as two distinct shared objects.
Shared objects are scoped to the namespace of the application instance and are identified by a string. The shared
object names should conform to the URI specification.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

84

You can also call SharedObject.get() to get a reference to a shared object that is in a namespace of another appli-
cation instance. This instance can be on the same server or on a different server and is called a proxied shared object.
To get a reference to a shared object from another instance, create a NetConnection object and use the NetCon-
nection.connect() method to connect to the application instance that owns the shared object. Pass the NetCon-
nection object as the netConnection parameter of the SharedObject.get() method. The server-side script must
get a reference to a proxied shared object before there is a request for the shared object from any client. To do this,
call SharedObject.get() in the application.onAppStart() handler.

If you call SharedObject.get() with a netConnection parameter and the local application instance already has a
shared object with the same name, the shared object is converted to a proxied shared object. All shared object
messages for clients that are connected to a proxied shared object are sent to the master instance.

If the connection state of the NetConnection object that was used as the netConnection parameter changes state
from connected to disconnected, the proxied shared object is set to idle and any messages received from subscribers
are discarded. The NetConnection.onStatus() handler is called when a connection is lost. You can then
reestablish a connection to the remote instance and call SharedObject.get(), which changes the state of the
proxied shared object from idle to connected.

If you call SharedObject.get() with a new NetConnection object on a proxied shared object that is already
connected, and if the URI of the new NetConnection object doesn’t match the current NetConnection object, the
proxied shared object unsubscribes from the previous shared object, sends a clear event to all subscribers, and
subscribes to the new shared object instance. When a subscribe operation to a proxied shared object is successful, all
subscribers are reinitialized to the new state. This process lets you migrate a shared object from one application
instance to another without disconnecting the clients.

Updates received by proxied shared objects from subscribers are checked to see if the update can be rejected based
on the current state of the proxied shared object version and the version of the subscriber. If the change can be
rejected, the proxied shared object doesn’t forward the message to the remote instance; the reject message is sent to
the subscriber.

The corresponding client-side ActionScript method is SharedObject.getRemote().

Example
The following example creates a shared object named foo in the function onProcessCmd(). The function is passed
a parameter, cmd, that is assigned to a property in the shared object.

function onProcessCmd(cmd){
// Insert code here.
var shObj = SharedObject.get("foo", true);
propName = cmd.name;
shObj.getProperty (propName, cmd.newAddress);

}

The following example uses a proxied shared object. A proxied shared object resides on a server or in an application
instance (called master) that is different from the server or application instance that the client connects to (called
proxy). When the client connects to the proxy and gets a remote shared object, the proxy connects to the master and
gives the client a reference to this shared object. The following code is in the main.asc file:

application.appStart = function() {
 nc = new NetConnection();
 nc.connect("rtmp://" + master_server + "/" + master_instance);
 proxySO = SharedObject.get("myProxy",true,nc);

// Now, whenever the client asks for a persistent
// shared object called myProxy, it receives themyProxy
// shared object from master_server/master_instance.

};

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

85

SharedObject.getProperty()
so.getProperty(name)

Retrieves the value of a named property in a shared object. The returned value is a copy associated with the property,
and any changes made to the returned value do not update the shared object. To update a property, use the Share-
dObject.setProperty() method.

Availability
Flash Communication Server 1

Parameters
name A string indicating the name of a property in a shared object.

Returns
The value of a SharedObject property. If the property doesn’t exist, returns null.

Example
The following example gets the value of the name property on the user shared object and assigns it to the firstName
variable:

firstName = user.getProperty("name");

See also
SharedObject.setProperty()

SharedObject.getPropertyNames()
so.getPropertyNames()

Enumerates all the property names for a given shared object.

Availability
Flash Communication Server 1

Returns
An array of strings that contain all the property names of a shared object.

Example
The following example calls getPropertyNames() on the myInfo shared object and places the names in the names
variable. It then enumerates those property names in a for loop.

myInfo = SharedObject.get("foo");
var addr = myInfo.getProperty("address");
myInfo.setProperty("city", San Francisco");
var names = myInfo.getPropertyNames();
for (x in names){

var propVal = myInfo.getProperty(names[x]);
trace("Value of property " + names[x] + " = " + propVal);

}

SharedObject.handlerName()
so.handlerName = function([p1,..., pN]){}

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

86

An event handler invoked when a shared object receives a message with the same name from the client-side
SharedObject.send() method. You must define a Function object and assign it to the event handler.

The this keyword used in the body of the function is set to the shared object instance returned by
SharedObject.get().

If you don’t want the server to receive a particular message, do not define this handler.

Availability
Flash Communication Server 1

Parameters
p1, ..., pN Optional parameters passed to the handler method if the message contains user-defined parameters.
These parameters are the user-defined objects that are passed to the SharedObject.send() method.

Returns
Any return value is ignored by the server.

Example
The following example defines an event handler called traceArgs:

var so = SharedObject.get("userList", false);
so.traceArgs = function(msg1, msg2){

trace(msg1 + " : " + msg2);
};

SharedObject.isDirty
so.isDirty

Read-only; a boolean value indicating whether a persistent shared object has been modified since the last time it was
stored (true) or not (false). The SharedObject.commit() method stores shared objects with an isDirty
property that is true.

This property is always false for nonpersistent shared objects.

Availability
Flash Media Server 2

Example
The following example saves the so shared object if it has been changed:

var so = SharedObject.get("foo", true);
if (so.isDirty){

SharedObject.commit(so.name);
}

SharedObject.lock()
so.lock()

Locks a shared object. This method gives the server-side script exclusive access to the shared object; when the
SharedObject.unlock() method is called, all changes are batched and one update message is sent through the
SharedObject.onSync() handler to all the clients that subscribe to this shared object. If you nest the
SharedObject.lock() and SharedObject.unlock() methods, make sure that there is an unlock() method for
every lock() method; otherwise, clients are blocked from accessing the shared object.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

87

You cannot use the SharedObject.lock() method on proxied shared objects.

Availability
Flash Communication Server 1

Returns
An integer indicating the lock count: 0 or greater indicates success; -1 indicates failure. For proxied shared objects,
always returns -1.

Example
The following example locks the so shared object, executes the code that is to be inserted, and then unlocks the
object:

var so = SharedObject.get("foo");
so.lock();
// Insert code here that operates on the shared object.
so.unlock();

SharedObject.mark()
so.mark(handlerName, p1, ..., pN)

Delivers all change events to a subscribing client as a single message.

In a server-side script, you can call the SharedObject.setProperty() method to update multiple shared object
properties between a call to the lock() and unlock() methods. All subscribing clients receive a change event
notification through the SharedObject.onSync() handler. However, because the server may collapse multiple
messages to optimize bandwidth, the change event notifications may not be sent in the same order as they were in
the code.

Use the mark() method to execute code after all the properties in a set have been updated. You can call the
handlerName parameter passed to the mark() method, knowing that all property changes before the mark() call
have been updated.

Availability
Flash Media Server 2

Parameters
handlerName Calls the specified handler on the client-side SharedObject instance. For example, if the
handlerName parameter is onChange, the client invokes the SharedObject.onChange() handler with all the p1,
...,pN parameters.

Note: Do not use a built-in method name for a handler name. For example, if the handler name is close, the
subscribing stream will be closed.

p1, ..., pN Parameters of any ActionScript type, including references to other ActionScript objects. Parameters
are passed to handlerName when it is executed on the client.

Returns
A boolean value. Returns true if the message can be dispatched to the client; otherwise, false.

Example
The following example calls the mark() method twice to group two sets of shared object property updates for clients:

var myShared = SharedObject.get("foo", true);

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

88

myShared.lock();
myShared.setProperty("name", "Stephen");
myShared.setProperty("address", "Xyz lane");
myShared.setProperty("city", "SF");
myShared.mark("onAdrChange", "name");
myShared.setProperty("account", 12345);
myShared.mark("onActChange");
myShared.unlock();

The following example shows the receiving client-side script:

connection = new NetConnection();
connection.connect("rtmp://flashmediaserver/someApp");
var x = SharedObject.get("foo", connection.uri, true);
x.connect(connection);
x.onAdrChange = function(str) {

// Shared object has been updated,
// can look at the “name”, “address” and “city” now.

}

x.onActChange = function(str) {
// Shared object has been updated,
// can look at the “account” property now,

}

SharedObject.name
so.name

Read-only; the name of a shared object.

Availability
Flash Communication Server 1

SharedObject.onStatus()
so.onStatus = function(info) {}

Invoked when errors, warnings, and status messages associated with either a local instance of a shared object or a
persistent shared object occur.

Availability
Flash Communication Server 1

Parameters
info An information object.

Example
The following client-side code defines an anonymous function that just traces the level and code properties of the
specified shared object:

so = SharedObject.get("foo", true);
so.onStatus = function(infoObj){

//Handle status messages passed in infoObj.
trace(infoObj.level + “; “ + infoObj.code);

};

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

89

SharedObject.onSync()
so.onSync = function(list){}

Invoked when a shared object changes. Use the onSync() handler to define a function that handles changes made
to a shared object by subscribers.

For proxied shared objects, defines the function to get the status of changes made by the server and other subscribers.

Note: You cannot define the onSync() handler on the prototype property of the SharedObject class in Server-Side
ActionScript.

Availability
Flash Communication Server 1

Parameters
list An array of objects that contain information about the properties of a shared object that have changed since
the last time the onSync() handler was called. The notifications for proxied shared objects are different from the
notifications for shared objects that are owned by the local application instance. The following table describes the
codes for local shared objects:

Note: Changing or deleting a property on the server side by using the SharedObject.setProperty() method always
succeeds, so there is no notification of these changes.

The following table describes the codes for local shared objects:

Note: The SharedObject.onSync() handler is invoked when a shared object has been successfully synchronized with
the server. If there is no change in the shared object, the list object may be empty.

Local code Meaning

change A property was changed by a subscriber.

delete A property was deleted by a subscriber.

name The name of a property that has changed or been deleted.

oldValue The old value of a property. This is true for both change and delete messages; on the client, oldValue is
not set for delete.

Proxied code Meaning

success A server change of the shared object was accepted.

reject A server change of the shared object was rejected. The value on the remote instance was not changed.

change A property was changed by another subscriber.

delete A property was deleted. This notification can occur when a server deletes a shared object or if another
subscriber deletes a property.

clear All the properties of a shared object are deleted. This can happen when the server’s shared object is out of
sync with the master shared object or when the persistent shared object migrates from one instance to
another. This event is typically followed by a change message to restore all of the server’s shared object
properties.

name The name of a property that has changed or been deleted.

oldValue The old value of the property. This is valid only for the reject, change, and delete codes.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

90

Example
The following example creates a function that is invoked whenever a property of the shared object so changes:

// Create a new NetConnection object.
nc = new NetConnection();
nc.connect("rtmp://server1.xyx.com/myApp");
// Create the shared object.
so = SharedObject.get("MasterUserList", true, nc);
// The list parameter is an array of objects containing information
// about successfully or unsuccessfully changed properties
// from the last time onSync() was called.
so.onSync = function(list) {

for (var i = 0; i < list.length; i++) {
switch (list[i].code) {

case "success":
trace ("success");
break;

case "change":
trace ("change");
break;

case "reject":
trace ("reject");
break;

case "delete":
trace ("delete");
break;

case "clear":
trace ("clear");
break;

}
}

};

SharedObject.purge()
so.purge(version)

Causes the server to remove all deleted properties that are older than the specified version. Although you can also
accomplish this task by setting the SharedObject.resyncDepth property, the purge() method gives the script
more control over which properties to delete.

Availability
Flash Communication Server 1

Parameters
version A number indicating the version. All deleted data that is older than this version is removed.

Returns
A boolean value.

Example
The following example deletes all the properties of the so shared object that are older than the value of so.version
- 3:

var so = SharedObject.get("foo", true);
so.lock();
so.purge(so.version - 3);
so.unlock();

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

91

SharedObject.resyncDepth
so.resyncDepth

An integer that indicates when the deleted properties of a shared object should be permanently deleted. You can use
this property in a server-side script to resynchronize shared objects and to control when shared objects are deleted.
The default value is infinity.

If the current revision number of the shared object minus the revision number of the deleted property is greater than
the value of SharedObject.resyncDepth, the property is deleted. Also, if a client connecting to this shared object
has a client revision that, when added to the value of SharedObject.resyncDepth, is less than the value of the
current revision on the server, all the current elements of the client shared object are deleted, the valid properties are
sent to the client, and the client receives a “clear” message.

This method is useful when you add and delete many properties and you don’t want to send too many messages to
the client. Suppose that a client is connected to a shared object that has 12 properties and then disconnects. After
that client disconnects, other clients that are connected to the shared object delete 20 properties and add 10
properties. When the client reconnects, it could, for example, receive a delete message for the 10 properties it previ-
ously had and then a change message on two properties. You can use SharedObject.resyncDepth property to send
a “clear” message, followed by a change message for two properties, which saves the client from receiving 10 delete
messages.

Availability
Flash Communication Server 1

Example
The following example resynchronizes the shared object so if the revision number difference is greater than 10:

so = SharedObject.get("foo");
so.resyncDepth = 10;

SharedObject.send()
so.send(methodName, [p1, ..., pN])

Executes a method in a client-side script. You can use SharedObject.send() to asynchronously execute a method
on all the Flash clients subscribing to a shared object. The server does not receive any notification from the client on
the success, failure, or return value in response to this message.

Availability
Flash Communication Server 1

Parameters
methodName A string indicating the name of a method on a client-side shared object. For example, if you specify
"doSomething", the client must invoke the SharedObject.doSomething() method, with all the p1, ..., pN
parameters.

p1, ..., pN Parameters of any type, including references to other objects. These parameters are passed to the
specified methodName on the client.

Returns
A boolean value of true if the message was sent to the client; otherwise, false.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

92

Example
The following example calls the SharedObject.send() method to invoke the doSomething() method on the client
and passes the string "This is a test":

var so = SharedObject.get("foo", true);
so.send("doSomething", "This is a test");

The following example is the client-side ActionScript code that defines the doSomething() method:

nc = new NetConnection();
nc.connect("rtmp://www.adobe.com/someApp");
var so = SharedObject.getRemote("foo", nc.uri, true);
so.connect(nc);
so.doSomething = function(str) {
// Process the str object.
};

SharedObject.setProperty()
so.setProperty(name, value)

Updates the value of a property in a shared object.

The name parameter on the server side is the same as an attribute of the data property on the client side. For example,
the following two lines of code are equivalent; the first line is Server-Side ActionScript and the second is client-side
ActionScript:

so.setProperty(nameVal, "foo");
clientSO.data[nameVal] = "foo";

A shared object property can be modified by a client between successive calls to SharedObject.getProperty()
and SharedObject.setProperty(). If you want to preserve transactional integrity, call the
SharedObject.lock() method before modifying the shared object; be sure to call SharedObject.unlock() when
you finish making modifications. If you call SharedObject.setProperty() without first calling
SharedObject.lock(), the change is made to the shared object, and all object subscribers are notified before
SharedObject.setProperty() returns. If you call SharedObject.lock() before you call
SharedObject.setProperty(), all changes are batched and sent when the SharedObject.unlock() method is
called. The SharedObject.onSync() handler on the client side is invoked when the local copy of the shared object
is updated.

Note: If only one source (whether client or server) is updating a shared object in a server-side script, you don’t need to
use the lock() or unlock() method or the onSync() handler.

Availability
Flash Communication Server 1

Parameters
name The name of the property in the shared object.

value An ActionScript object associated with the property, or null to delete the property.

Example
The following example uses the SharedObject.setProperty() method to create the city property with the value
San Francisco. It then enumerates all the property values in a for loop and calls trace() to display the values.

myInfo = SharedObject.get("foo");
var addr = myInfo.getProperty("address");

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

93

myInfo.setProperty("city", "San Francisco");
var names = sharedInfo.getPropertyNames();
for (x in names){

var propVal = sharedInfo.getProperty(names[x]);
trace("Value of property " + names[x] + " = " + propVal);

}

See also
SharedObject.getProperty()

SharedObject.size()
so.size()

Returns the total number of valid properties in a shared object.

Availability
Flash Communication Server 1

Returns
An integer indicating the number of properties.

Example
The following example gets the number of properties of a shared object and assigns that number to the variable len:

var so = SharedObject.get("foo", true);
var soLength = so.size();

SharedObject.unlock()
so.unlock()

Allows other clients to update the shared object. A call to this method also causes the server to commit all changes
made after the SharedObject.lock() method is called and sends an update message to all clients.

You cannot call the SharedObject.unlock() method on proxied shared objects.

Availability
Flash Communication Server 1

Returns
An integer indicating the lock count: 0 or greater if successful; -1 otherwise. For proxied shared objects, this method
always returns -1.

Example
The following example unlocks a shared object:

var so = SharedObject.get("foo", true);
so.lock();
// Insert code to manipulate the shared object.
so.unlock();

See also
SharedObject.lock()

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

94

SharedObject.version
so.version

Read-only; the current version number of the shared object. Calls to the SharedObject.setProperty() method
on either the client or the server increment the value of the version property.

Availability
Flash Communication Server 1

SOAPCall class
Availability
Flash Media Server 2

The SOAPCall class is the object type that is returned from all web service calls. These objects are typically
constructed automatically when a Web Service Definition Language (WSDL) is parsed and a stub is generated.

Property summary

Event handler summary

SOAPCall.onFault()
SOAPCall.onFault(fault)

Invoked when a method has failed and returned an error.

Availability
Flash Media Server 2

Parameters
fault The fault parameter is an object version of an XML SOAP Fault (see SOAPCall class).

SOAPCall.onResult()
mySOAPCall.onResult(result){}

Invoked when a method has been successfully invoked and returned.

Availability
Flash Media Server 2

Property Description

SOAPCall.request An XML object that represents the current SOAP (Simple Object Access Protocol) request.

SOAPCall.response An XML object that represents the most recent SOAP response.

Event handler Description

SOAPCall.onFault() Invoked when a method has failed and returned an error.

SOAPCall.onResult() Invoked when a method has successfully invoked and returned.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

95

Parameters
result The decoded ActionScript object returned by the operation (if any). To get the raw XML returned instead
of the decoded result, access the SOAPCall.response property.

SOAPCall.request
mySOAPCall.request

An XML object that represents the current Simple Object Access Protocol (SOAP) request.

Availability
Flash Media Server 2

SOAPCall.response
mySOAPCall.response

An XML object that represents the most recent SOAP response.

Availability
Flash Media Server 2

SOAPFault class
The SOAPFault class is the object type of the error object returned to the WebService.onFault() and
SOAPCall.onFault() functions. This object is returned as the result of a failure and is an ActionScript mapping of
the SOAP Fault XML type.

Availability
Flash Media Server 2

Property summary

SOAPFault.detail
mySOAPFault.detail

A string indicating the application-specific information associated with the error, such as a stack trace or other infor-
mation returned by the web service engine.

Availability
Flash Media Server 2

Property Description

SOAPFault.detail A string indicating the application-specific information associated with the error, such as a
stack trace or other information returned by the web service engine.

SOAPFault.faultactor A string indicating the source of the fault.

SOAPFault.faultcode A string indicating the short, standard qualified name describing the error.

SOAPFault.faultstring A string indicating the human-readable description of the error.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

96

SOAPFault.faultactor
mySOAPFault.faultactor

A string indicating the source of the fault. This property is optional if an intermediary is not involved.

Availability
Flash Media Server 2

SOAPFault.faultcode
mySOAPFault.faultcode

A string indicating the short, standard qualified name describing the error.

Availability
Flash Media Server 2

SOAPFault.faultstring
mySOAPFault.faultstring

A string indicating the human-readable description of the error.

Availability
Flash Media Server 2

Example
The following example shows the fault code in a text field if the WSDL fails to load:

// Load the WebServices class:
load("webservices/WebServices.asc");

// Prepare the WSDL location:
var wsdlURI = "http://www.flash-db.com/services/ws/companyInfo.wsdl";

// Instantiate the web service object by using the WSDL location:
stockService = new WebService(wsdlURI);

// Handle the WSDL parsing and web service instantiation event:
stockService.onLoad = function(wsdl){

wsdlField.text = wsdl;
}

// If the wsdl fails to load, the onFault event is fired:
stockService.onFault = function(fault){

wsdlField.text = fault.faultstring;
}

Stream class
The Stream class lets you manage or republish streams in a Flash Media Server application. You can’t attach audio or
video sources to a Stream object; you can only play and manage existing streams. Use the Stream class to shuffle
existing streams in a playlist, pull streams from other servers, control access to streams, and record data streams such
as log files.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

97

A stream is a one-way connection between a client running Flash Player and a server running Flash Media Server,
or between two servers running Flash Media Server. You can create a stream in Server-Side ActionScript by calling
Stream.get(). A client can access multiple streams at the same time, and there can be hundreds or thousands of
Stream objects active at the same time.

Streams can contain ActionScript data. Call the Stream.send() method to add data to a stream. You can extract
this data without waiting for a stream to play in real time, such as when you’re creating a log file. You can also use it
to add metadata to a stream.

Availability
Flash Communication Server 1

Property summary

Method summary

Event handler summary

Stream.bufferTime
myStream.bufferTime

Property (read-only) Description

Stream.bufferTime Read-only; indicates how long to buffer messages before a stream is played, in seconds.

Stream.name Read-only; contains a unique string associated with a live stream.

Stream.syncWrite A boolean value that controls when a stream writes the contents of the buffer to a file when
the stream is recording.

Method Description

Stream.clear() Deletes a recorded FLV file from the server.

Stream.flush() Flushes a stream.

Stream.get() Static; returns a reference to a Stream object.

Stream.getOnMetaData() Returns an object containing the metadata for the named stream or video file.

Stream.length() Static; returns the length of a recorded stream in seconds.

Stream.play() Controls the data source of a stream with an optional start time, duration, and reset flag to
flush any previously playing stream.

Stream.record() Records all the data passing through a Stream object and creates an FLV file of the recorded
stream.

Stream.send() Invokes a remote method on a client-side NetStream object subscribing to the stream and
passes it parameters of any ActionScript data type.

Stream.setBufferTime() Sets the length of the message queue.

Stream.setVirtualPath() Sets the virtual directory path for video stream playback.

Stream.size() Static; returns the size of a recorded stream in bytes.

Event handler Description

Stream.onStatus() Invoked every time the status of a Stream object changes.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

98

Read-only; indicates how long to buffer messages before a stream plays, in seconds. This property applies only when
playing a stream from a remote server or when playing a recorded stream locally. Call Stream.setBufferTime()
to set the bufferTime property.

A message is data that is sent back and forth between Flash Media Server and Flash Player. The data is divided into
small packets (messages), and each message has a type (audio, video, or data).

Availability
Flash Communication Server 1

Stream.clear()
myStream.clear()

Deletes a recorded FLV file from the server.

Availability
Flash Communication Server 1

Returns
A boolean value of true if the call succeeds; otherwise, false.

Example
The following example deletes a recorded stream called playlist.flv. Before the stream is deleted, the example defines
an onStatus() handler that uses two information object error codes, NetStream.Clear.Success and
NetStream.Clear.Failed, to send status messages to the application log file and the Live Log panel in the Admin-
istration Console.

s = Stream.get("playlist");
if (s){

s.onStatus = function(info){
if(info.code == "NetStream.Clear.Success"){

trace("Stream cleared successfully.");
}
if(info.code == "NetStream.Clear.Failed"){

trace("Failed to clear stream.");
}

};
s.clear();

}

Stream.flush()
myStream.flush()

Flushes a stream. If the stream is used for recording, the flush() method writes the contents of the buffer associated
with the stream to the recorded file.

It is highly recommended that you call flush() on a stream that contains only data. Synchronization problems can
occur if you call the flush() method on a stream that contains data and either audio, video, or both.

Important: H.264 data and AAC data is not copied to a recorded video file.

Availability
Flash Media Server 2

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

99

Returns
A boolean value of true if the buffer was successfully flushed; otherwise, false.

Example
The following example flushes the myStream stream:

// Set up the server stream.
application.videoStream = Stream.get("aVideo");

if (application.videoStream){
application.videoStream.record();
application.videoStream.send("test", "hello world");
application.videoStream.flush();

}

Stream.get()
Stream.get(name)

Static; returns a reference to a Stream object. If the requested object is not found, a new instance is created.

You can publish streams only in FLV format; mp3:, mp4:, and id3: are not supported in the stream name for the
Stream.get() method.

Availability
Flash Communication Server 1

Parameters
name A string indicating the name of the stream instance to return.

Returns
A Stream object if the call is successful; otherwise, null.

Examples
The following example gets the stream myVideo and assigns it to the variable playStream. It then calls the
Stream.play() method from playStream.

var playStream = Stream.get("videos");
playStream.play("file1", 0, -1);

In the following example, the value of playStream is null because this method doesn’t support MP3 files:

var playStream = Stream.get("mp3:foo");

Stream.getOnMetaData()
Stream.getOnMetaData(name)

Returns an object containing the metadata for the named stream or video file. The object contains one property for
each metadata item. The Flash Video Exporter utility (version 1.1 or later) embeds a video's duration, creation date,
data rates, and other information into the video file. This method is currently supported only with FLV files.

Availability
Flash Media Server 2

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

100

Parameter
name A string indicating the name of a recorded stream, such as “myVideo”. The name can be passed in either of
the following forms: “myVideo” or “flv:myVideo”.

Returns
An Object containing the metadata as properties.

Example
The following example lists the properties and values for the metadata for the recorded stream myVideo.flv:

var infoObject = Stream.getOnMetaData("myVideo");

trace("Metadata for myVideo.flv:");

for(i in infoObject){
trace(i + " = " + infoObject[i]);

}

Stream.length()
Stream.length(name[, virtualKey])

Static; returns the length of a recorded file in seconds. If the requested file is not found, the return value is 0.

Availability
Flash Communication Server 1

Parameters
name A string indicating the name of a recorded stream. To get the length of an MP3 file, precede the name of the
file with mp3: (for example, "mp3:beethoven").

virtualKey A string indicating a key value. Starting with Flash Media Server 2, stream names are not always
unique; you can create multiple streams with the same name, place them in different physical directories, and use
the VirtualDirectory section and VirtualKeys section of the Vhost.xml file to direct clients to the appropriate
stream. Because the Stream.length() method is not associated with a client, but connects to a stream on the server,
you may need to specify a virtual key to identify the correct stream. For more information about keys, see
Client.virtualKey. This parameter is optional.

Returns
A number.

Example
The following example gets the length of the recorded stream file myVideo and assigns it to the variable streamLen:

function onProcessCmd(cmd){
var streamLen = Stream.length("myVideo");
trace("Length: " + streamLen + "\n");

}

The following example gets the length of the MP3 file beethoven.mp3 and assigns it to the variable streamLen:

function onProcessCmd(cmd){
var streamLen = Stream.length("mp3:beethoven");
trace("Length: " + streamLen + "\n");

}

The following example gets the length of the MP4 file beethoven.mp4 and assigns it to the variable streamLen:

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

101

function onProcessCmd(cmd){
var streamLen = Stream.length("mp4:beethoven");
trace("Length: " + streamLen + "\n");

}

Stream.name
myStream.name

Read-only; contains a unique string associated with a live stream. You can use this property as an index to find a
stream within an application.

Availability
Flash Communication Server 1

Example
The following function takes a Stream object as a parameter and returns the name of the stream:

function getStreamName(myStream){
return myStream.name;

}

Stream.onStatus()
myStream.onStatus = function([infoObject]) {}

Invoked every time the status of a Stream object changes. For example, if you play a file in a stream,
Stream.onStatus() is invoked. Use Stream.onStatus() to check when play starts and ends, when recording
starts, and so on.

Availability
Flash Communication Server 1

Parameters
infoObject An Object with code and level properties that contain information about a stream. This parameter
is optional, but it is usually used. The Stream information object contains the following properties:

The following table describes the code and level property values:

Property Meaning

clientid A unique number identifying each client.

code A string identifying the event that occurred.

description Detailed information about the code. Not every information object includes this property.

details The stream name.

level A string indicating the severity of the event.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

102

Example
The following server-side code attempts to delete a given stream and traces the resulting return code:

Client.prototype.delStream = function(streamName){
trace("*** deleting stream: " + streamName);
s = Stream.get(streamName);
if (s) {

s.onStatus = function(info){
if (info.code == "NetStream.Clear.Success"){

trace("*** Stream " + streamName + "deleted.");
}
if (info.code == "NetStream.Clear.Failure"){

trace("*** Failure to delete stream " + streamName);
}

};
s.clear();

}
}

Stream.play()
myStream.play(streamName, [startTime, length, reset, remoteConnection, virtualKey])

Code property Level property Description

NetStream.Clear.Failed error A call to application.clearStreams() failed to delete a stream.

NetStream.Clear.Success status A call to application.clearStreams() successfully deleted a
stream.

NetStream.Failed error An attempt to use a Stream method failed.

NetStream.Play.Failed error An call to Stream.play() failed.

NetStream.Play.InsufficientBW warning Data is playing behind the normal speed.

NetStream.Play.Start status Play was started.

NetStream.Play.StreamNotFound error An attempt was made to play a stream that does not exist.

NetStream.Play.Stop status Play was stopped.

NetStream.Play.Reset status A playlist was reset.

NetStream.Play.PublishNotify status The initial publish operation to a stream was successful. This message is
sent to all subscribers.

NetStream.Play.UnpublishNotify status An unpublish operation from a stream was successful. This message is
sent to all subscribers.

NetStream.Publish.BadName error An attempt was made to publish a stream that is already being published
by someone else.

NetStream.Publish.Start status Publishing was started.

NetStream.Record.Failed error An attempt to record a stream failed.

NetStream.Record.NoAccess error An attempt was made to record a read-only stream.

NetStream.Record.Start status Recording was started.

NetStream.Record.Stop status Recording was stopped.

NetStream.Unpublish.Success status A stream has stopped publishing.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

103

Controls the data source of a stream with an optional start time, duration, and reset flag to flush any previously
playing stream. Call play() to do the following:

• Chain streams between servers.

• Create a hub to switch between live streams and recorded streams.

• Combine steams into a recorded stream.

You can combine multiple streams to create a playlist for clients. The Stream.play() method behaves a bit differ-
ently from the NetStream.play() method on the client side. A server-side call to Stream.play() is similar to a
client-side call to NetStream.publish(); it controls the source of data coming into a stream. When you call
Stream.play() on the server, the server becomes the publisher. Because the server has higher priority than the
client, the client is forced to unpublish from the stream if the server calls a play() method on the same stream.

If any recorded streams are included in a server playlist, you cannot play the server playlist stream as a live stream.

Note: A stream that plays from a remote server by means of the NetConnection object is considered a live stream.

To delete a Stream object, use the delete operator to mark the stream for deletion. The script engine deletes the
object during its garbage collection routine.

// Initialize the Stream object.
s = stream.get("foo");
// Play the stream.
s.play("name", p1, ... pN);
// Stop the stream.
s.play(false);
// Mark the Stream object for deletion during server garbage routine.
delete s;

Availability
Flash Communication Server 1

Parameters
streamName A string indicating the name of any published live stream, recorded stream, MP3 file, or MP4 file.

To play video files, specify the name of the stream without a file extension (for example, "bolero"). To play back
MP3 or ID3 tags, you must precede the stream name with mp3:or id3: (for example, "mp3:bolero"
or"id3:bolero"). To play H.264/AAC files, you must precede the stream name with mp4:. For example, to play the
file file1.m4v, specify "mp4:file1.m4v".

Note: For H.264 media files, specify the full file name, including the file extension.

startTime A number indicating the start time of the stream playback, in seconds. If no value is specified, it is set
to -2. If startTime is -2, the server tries to play a live stream with the name specified in streamName. If no live
stream is available, the server tries to play a recorded stream with the name specified in streamName. If no recorded
stream is found, the server creates a live stream with the name specified in streamName and waits for someone to
publish to that stream. If startTime is -1, the server attempts to play a live stream with the name specified in
streamName and waits for a publisher if no specified live stream is available. If startTime is greater than or equal
to 0, the server plays the recorded stream with the name specified in streamName, starting from the time given. If
no recorded stream is found, the play() method is ignored. If a negative value other than -1 is specified, the server
interprets it as -2. This parameter is optional.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

104

length A number indicating the length of play, in seconds. For a live stream, a value of -1 plays the stream as long
as the stream exists. Any positive value plays the stream for the corresponding number of seconds. For a recorded
stream, a value of -1 plays the entire file, and a value of 0 returns the first video frame. Any positive number plays
the stream for the corresponding number of seconds. By default, the value is -1. This parameter is optional.

reset A boolean value, or number, that flushes the playing stream. If reset is false (0), the server maintains a
playlist, and each call to Stream.play() is appended to the end of the playlist so that the next play does not start
until the previous play finishes. You can use this technique to create a dynamic playlist. If reset is true (1), any
playing stream stops, and the playlist is reset. By default, the value is true.

You can also specify a number value of 2 or 3 for the reset parameter, which is useful when playing recorded stream
files that contain message data. These values are analogous to false (0) and true (1), respectively: a value of 2
maintains a playlist, and a value of 3 resets the playlist. However, the difference is that specifying either 2 or 3 for
reset returns all messages in the specified recorded stream at once, rather than at the intervals at which the
messages were originally recorded (the default behavior).

remoteConnection A NetConnection object that is used to connect to a remote server. If this parameter is
provided, the requested stream plays from the remote server. This is an optional parameter.

virtualKey A string indicating a key value. Starting with Flash Media Server 2, stream names are not always
unique; you can create multiple streams with the same name, place them in different physical directories, and use
the VirtualDirectory section and VirtualKeys section of the Vhost.xml file to direct clients to the appropriate
stream. Because the Stream.length() method is not associated with a client, but connects to a stream on the server,
you may need to specify a virtual key to identify the correct stream. For more information about keys, see
Client.virtualKey. This is an optional parameter.

Returns
A boolean value: true if the call is accepted by the server; otherwise, false. If the server fails to find the stream, or
if an error occurs, the Stream.play() method can fail. To get information about the Stream.play() method,
define a Stream.onStatus() handler.

If the streamName parameter is false, the stream stops playing. A boolean value of true is returned if the stop
succeeds; otherwise, false.

Example
The following example shows how streams can be chained between servers:

application.myRemoteConn = new NetConnection();
application.myRemoteConn.onStatus = function(info){

trace("Connection to remote server status " + info.code + "\n");
// Tell all the clients.
for (var i = 0; i < application.clients.length; i++){

application.clients[i].call("onServerStatus", null,
info.code, info.description);

}
};
// Use the NetConnection object to connect to a remote server.
application.myRemoteConn.connect(rtmp://movie.com/movieApp);
// Set up the server stream.
application.myStream = Stream.get("foo");
if (application.myStream){

application.myStream.play("Movie1", 0, -1, true, application.myRemoteConn);
}

The following example shows how to use Stream.play() as a hub to switch between live streams and recorded
streams:

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

105

// Set up the server stream.
application.myStream = Stream.get("foo");
if (application.myStream){

// This server stream plays "Live1",
// "Record1", and "Live2" for 5 seconds each.
application.myStream.play("Live1", -1, 5);
application.myStream.play("Record1", 0, 5, false);
application.myStream.play("Live2", -1, 5, false);

}

The following example combines different streams into a recorded stream:

// Set up the server stream.
application.myStream = Stream.get("foo");
if (application.myStream){

// Like the previous example, this server stream
// plays "Live1", "Record1", and "Live2"
// for 5 seconds each. But this time,
// all the data will be recorded to a recorded stream "foo".
application.myStream.record();
application.myStream.play("Live1", -1, 5);
application.myStream.play("Record1", 0, 5, false);
application.myStream.play("Live2", -1, 5, false);

}

The following example calls Stream.play() to stop playing the stream foo:

application.myStream.play(false);

The following example creates a playlist of three MP3 files (beethoven.mp3, mozart.mp3, and chopin.mp3) and
plays each file in turn over the live stream foo:

application.myStream = Stream.get("foo");
if(application.myStream) {

application.myStream.play("mp3:beethoven", 0);
application.myStream.play("mp3:mozart", 0, false);
application.myStream.play("mp3:chopin.mp3", 0, false);
application.myStream.play("mp4:file1.mp4", -1, 5, false);

}

The following example plays an MP4 file:

application.myStream = Stream.get("foo");
if(application.myStream) {

application.myStream.play("mp4:beethoven", 0);
application.myStream.play("mp4:mozart", 0, false);

}

In the following example, data messages in the recorded stream file log.flv are returned at the intervals at which
they were originally recorded:

application.myStream = Stream.get("data");
if (application.myStream) {

application.myStream.play("log", 0, -1);
}

In the following example, data messages in the recorded stream file log.flv are returned all at once, rather than at
the intervals at which they were originally recorded:

application.myStream = Stream.get("data");
if (application.myStream) {

application.myStream.play("log", 0, -1, 2);
}

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

106

A server-side stream cannot subscribe to itself. For example, the following code is invalid:

// Client-side code
var ns = new NetStream
ns.publish("TestStream");

// Server-side code
st = Stream.get("TestStream");
st.play("TestStream");

Stream.record()
myStream.record(flag)

Records all the data passing through a Stream object and creates an FLV file of the recorded stream.

Note: The Stream.record() method saves all streams as FLV files, even if the stream contains FLV, MP3, and MP4
content. H.264 data and AAC data is not copied to a recorded FLV file.

When you record a stream, the server creates an FLV file and stores it in the streams subdirectory of the application
folder. The server creates the streams directory and subdirectories for each application instance name. If a stream
isn’t associated with an application instance, it is stored in a subdirectory called _definst_ (default instance).

For example, a stream from the default lecture application instance would be stored here: applica-
tions\lectures\streams_definst_. A stream from the monday lectures application instance would be stored here:
applications\lectures\streams\monday.

Note: The server creates these directories automatically; you don’t have to create one for each instance name.

Availability
Flash Communication Server 1

Parameters
flag One of the these values: "record", "append", or false. If the value is "record", the data file is overwritten if
it exists. If the value is "append", the incoming data is appended to the end of the existing file. If the value is false,
any previous recording stops. By default, the value is "record".

Returns
A boolean value of true if the recording succeeds; otherwise, false.

Example
The following example opens a stream s and, when it is open, plays smith and records it. Because no value is passed
to the record() method, the default value, record, is passed.

// Start recording.
s = Stream.get("SurfVideos");
if (s){

s.play("smith");
s.record();

}
// Stop recording.
s = Stream.get("SurfVideos");
if (s){

s.record(false);
}

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

107

Stream.send()
myStream.send(handlerName, [p1, ..., pN])

Invokes a remote method on a client-side NetStream object subscribing to the stream and passes it parameters of any
ActionScript data type. The server does not receive a response object, and any values returned by the client-side
method are discarded.

You can call Stream.send() to send data over to clients subscribing to a stream. The data is passed in the p1,...,
pN parameters to the handlerName method, which is defined on the subscribing stream. Publishing streams do not
receive remote method calls, even if they define a method called handlerName().

You can call Stream.send() to send metadata to clients subscribing to a live stream in a data keyframe. When a
client subscribes to a live stream after it starts playing, the client may not receive the stream’s metadata. This metadata
can contain any information about the stream that you want the client to know, such as the length, the name of the
speaker, and the location of the broadcast.

A data keyframe is a special data message that can be added to a live stream and stored in the memory of the server.
The data keyframe is retrieved when a client subscribes to the stream. There are two reserved values that tell the
server to set or clear a data keyframe: @setDataFrame and @clearDataFrame. Like other data messages, a data
keyframe contains a handler name and a list of parameters. Use the following syntax to set or clear a data keyframe:

Stream.send("@setDataFrame", handlerName [, p1, p2, ..., pN]);

You can send multiple data keyframes for each live stream. However, the handler name of the data keyframe must
be unique. Only the stream’s publisher and the server are allowed to set and clear data keyframes. You can call the
client-side ActionScript NetStream.send() method or the Server-Side ActionScript Stream.send() method to set
a data keyframe in a stream. Setting data keyframes is supported in Flash Media Interactive Server 3 and Flash Media
Development Server 3 and later.

Note: The server does not need to take ownership of a stream from the client in order to send a message. After send()
is called, the client still owns the stream as a publisher. This is different from how the Stream.play() method behaves.

Availability
Flash Communication Server 1

Parameters
handlerName A string indicating the remote method to call on the client. The handlerName value is the name of
a method relative to the subscribing Stream object. For example, if handlerName is doSomething, the doSomething
method at the stream level is invoked with all the p1, ..., pN parameters. Unlike the method names in
Client.call() and NetConnection.call(), the handler name can be only one level deep (that is, it cannot have
the form object/method).

Note: Do not use a built-in method name for a handler name. For example, if the handler name is close, the
subscribing stream will close.

p1, ..., pN Parameters of any ActionScript type, including references to other ActionScript objects. These
parameters are passed to the specified handler when it is executed on the Flash client.

Returns
A boolean value of true if the message was sent to the client; otherwise, false.

Example
The following example calls the onMsg() method on the client-side NetStream object and sends it the string "Hello
World":

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

108

s = Stream.get("testStream");
s.send("onMsg", "Hello World");

The following client-side ActionScript defines the method that handles the data passed on the testStream stream:

ns = new NetStream(nc);
ns.onMsg = function(str) {

trace(str); //"Hello World" is output
}
ns.play("testStream", -2, -1, 3);

The following example adds metadata to a live stream:

s = new Stream(nc);
s.onStatus = function(info){

if (info.code == "NetStream.Publish.Start"){
metaData = new Object();
metaData.title = "myStream";
metaData.width = 400;
metaData.height = 200;
this.send("@setDataFrame", "onMetaData", metaData);

}
};
s.publish("myStream");

Stream.setBufferTime()
myStream.setBufferTime()

Sets the length of the message queue. When you play a stream from a remote server, the Stream.setBufferTime()
method sends a message to the remote server that adjusts the length of the message queue. The default length of the
message queue is 0 seconds. You should set the buffer time higher when playing a high-quality recorded stream over
a low-bandwidth network.

When a user clicks a seek button in an application, buffered packets are sent to the server. The buffered seeking in a
Flash Media Server application occurs on the server; Flash Media Server doesn’t support client-side buffering. The
seek time can be smaller or larger than the buffer size, and it has no direct relationship to the buffer size. Every time
the server receives a seek request from Flash Player, it clears the message queue on the server. The server tries to seek
to the desired position and starts filling the queue again. At the same time, Flash Player also clears its own buffer
after a seek request, and the buffer is eventually filled after the server starts sending the new messages.

Availability
Flash Communication Server 1

Stream.setVirtualPath()
myStream.setVirtualPath(virtualPath, directory, virtualKey)

Sets the virtual directory path for video stream playback. Maps a virtual directory path to a physical directory and
assigns that mapping to a virtual key. The virtual key designates a range of Flash Player versions. These mappings let
you use the same URL to serve different versions of streams to clients based on the Flash Player version.

First, create a mapping between Flash Player versions and virtual keys in the VirtualKeys section of the Vhost.xml
file. When Flash Player requests a stream from Flash Media Interactive Server, the Flash Player version is mapped to
a virtual key based on the values that you set in the Vhost.xml file, as in this example:

<VirtualKeys>
<!-- Create your own ranges and key values.-->
<!-- You can create as many Key elements as you need.-->

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

109

<Key from="WIN 8,0,0,0" to="WIN 9,0,59,0">A</Key>
<Key from="WIN 6,0,0,0" to="WIN 7,0,55,0">B</Key>

</VirtualKeys>

Next, in the VirtualDirectory section of the Vhost.xml file, map the virtual keys to a virtual path and a physical
directory, which are separated by a semicolon (for example, foo;c:\streams). To set up several virtual directories
for different Flash Player versions, use the same virtual path with different physical directories for each Streams tag,
as shown in this example:

<VirtualDirectory>
<Streams key="A">foo;c:\streams\on2</Streams>
<Streams key="B">foo;c:\streams\sorenson</Streams>

</VirtualDirectory>

Flash Media Interactive Server serves the client a stream from whichever virtual directory the virtual key is mapped
to. For example, if the client is Flash Player 8 and the call is myNetStream.play("foo/familyVideo"), the
Streams element with key A would be used and the client would be served the higher-quality stream
c:\streams\on2\familyVideo.flv. If the client is Flash Player 7, the same URL maps to the sorenson stream directory
and the c:\streams\sorenson\familyVideo.flv file plays.

It is most common to change the values of the VirtualKeys and VirtualDirectory elements in the Vhost.xml file.
However, you can call Stream.setVirtualPath() to create Streams elements and you can use
Client.virtualKey to set a client’s Key value.

For more information about the Vhost.xml file, see Adobe Flash Media Server Configuration and Administration
Guide.

Availability
Flash Media Server 2

Parameters
virtualPath A string indicating the virtual directory path of a stream. If the stream is not located in the virtual
path, the default virtual directory path is searched.

directory A string indicating the physical directory in which to store streams.

virtualKey A string that sets or removes the key value for each Streams entry.

Note: To indicate a slash in the virtualPath and directory parameters, you must use a forward slash (/) or a double
backslash (\\). In strings, single backslashes are used to escape characters. A double backslash is the escape sequence for
a backslash character.

Example
The following code sets the virtual key to B, the virtual path to foo, and the physical directory to c:\streams\on2:

Stream.setVirtualPath("foo", "c:/streams/on2", "B");

Stream.size()
Stream.size(name[, virtualKey])

Static; returns the size of a recorded stream in bytes.

Availability
Flash Media Server 2

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

110

Parameters
name A string indicating the name of a stream. You can use the format tag in the name parameter to specify the
type.

virtualKey A string indicating a key value. Starting with Flash Media Server 2, stream names are not always
unique; you can create multiple streams with the same name, place them in different physical directories, and use
the VirtualDirectory section and VirtualKeys section of the Vhost.xml file to direct clients to the appropriate
stream. Because the Stream.size() method is not associated with a client, but connects to a stream on the server,
you may need to specify a virtual key to identify the correct stream. For more information about keys, see
Client.virtualKey. This parameter is optional.

Returns
A number; if the requested stream is not found, returns 0.

Example
The following examples display the size of a stream and an MP3 stream, respectively:

function onProcessCmd(cmd){
// Insert code here...
var streamSize = Stream.size("foo");
trace("Size: " + streamSize + "\n");

}

//For mp3

function onProcessCmd(cmd){
// Insert code here...
var streamSize = Stream.size("mp3:foo");
trace("Size: " + streamSize + "\n");

}

//For mp4

function onProcessCmd(cmd){
// Insert code here...
var streamSize = Stream.size("mp4:foo");
trace("Size: " + streamSize + "\n");

}

Stream.syncWrite
myStream.syncWrite

A boolean value that controls when a stream writes the contents of the buffer to a file as the stream is recording.
When syncWrite is true, all the messages that pass through the stream are flushed to the file immediately. It is
highly recommended that you set syncWrite to true only in a stream that contains only data. Synchronization
problems may occur if syncWrite is set to true in a stream that contains data and audio, video, or some combi-
nation.

Availability
Flash Media Server 2

Example
The following example flushes data immediately to the file:

// Assume foo is a data-only stream.
application.myStream = Stream.get("foo");

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

111

if (application.myStream){
application.myStream.syncWrite = true;
application.myStream.record();
application.myStream.send("test", "hello world");

}

WebService class
Availability
Flash Media Server 2

Description
You can use the WebService class to create and access a WSDL/SOAP web service. Several classes comprise the Flash
Media Interactive Server web services feature: WebService class, SOAPFault class, SOAPCall class, and Log class.

Note: The WebService class is not able to retrieve complex data or an array returned by a web service. Also, the
WebService class does not support security features.

The following steps outline the process of creating and accessing a web service.

Create and access a web service:
1 Load the WebServices class:

load("webservices/WebServices.asc");

2 Prepare the WSDL location:
var wsdlURI = "http://www.flash-db.com/services/ws/companyInfo.wsdl";

3 Instantiate the web service object by using the WSDL location:
stockService = new WebService(wsdlURI);

4 (Optional) Handle the WSDL parsing and web service instantiation event through the WebService.onLoad()
handler:

// Handle the WSDL loading event.
stockService.onLoad = function(wsdl){

wsdlField.text = wsdl;
}

5 (Optional) If the WSDL doesn’t load, handle the fault:

// If the WSDL fails to load, the onFault event is fired.
stockService.onFault = function(fault){

wsdlField.text = fault.faultstring;
}

6 (Optional) Set the SOAP headers:

// If headers are required, they are added as follows:
var myHeader = new XML(headerSource);
stockService.addHeader(myHeader);

7 Invoke a web service operation:

// Method invocations return an asynchronous callback.
callback = stockService.doCompanyInfo("anyuser", "anypassword", "ADBE");
// NOTE: callback is undefined if the service itself is not created

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

112

// (and service.onFault is also invoked).

8 Handle either the output or the error fault returned from the invocation:
// Handle a successful result.
callback.onResult = function(result){

// Receive the SOAP output, which in this case
// is deserialized as a struct (ActionScript object).
for (var i in result){

 trace(i +" : " +result[i]);
}

}
// Handle an error result.
callback.onFault = function(fault){

// Catch the SOAP fault and handle it
// according to this application’s requirements.
for (var i in fault){

trace(i +" : " +fault[i]);
}

}

Event handler summary

WebService constructor
new WebService(wsdlURI)

Creates a new WebService object. You must use the constructor to create a WebService object before you call any of
the WebService class methods.

Availability
Flash Media Server 2

Parameters
wsdlURI A string specifying the URI of a WSDL.

Returns
A WebService object.

Example
The following example prepares the WSDL location and passes it to the WebService constructor to create a new
WebService object, stockService:

load("webservices/WebServices.asc");
var wsdlURI = "http://www.flash-db.com/services/ws/companyInfo.wsdl";
stockService = new WebService(wsdlURI);

WebService.onFault()
myWS.onFault(fault){}

Invoked when an error occurs during WSDL parsing. The web services features convert parsing and network
problems into SOAP faults for simple handling.

Event handler Description

WebService.onFault() Invoked when an error occurs during WSDL parsing.

WebService.onLoad() Invoked when the web service has successfully loaded and parsed its WSDL file.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

113

Availability
Flash Media Server 2

Parameters
fault An object version of an XML SOAP fault (see SOAPFault class).

Example
The following example displays the fault code in a text field if the WSDL fails to load and the onFault() event fires:

// Load the WebServices class:
load("webservices/WebServices.asc");

// Prepare the WSDL location:
var wsdlURI = "http://www.flash-db.com/services/ws/companyInfo.wsdl";

// Instantiate the web service object by using the WSDL location:
stockService = new WebService(wsdlURI);

// Handle the WSDL parsing and web service instantiation event:
stockService.onLoad = function(wsdl){

wsdlField.text = wsdl;
}

// If the WSDL fails to load, the onFault event is fired:
stockService.onFault = function(fault){

wsdlField.text = fault.faultstring;
}

WebService.onLoad()
myWS.onLoad(wsdldocument)

Invoked when the web service has successfully loaded and parsed its WSDL file. Operations can be invoked in an
application before this event occurs; when this happens, they are queued internally and are not actually transmitted
until the WSDL has loaded.

Availability
Flash Media Server 2

Parameters
wsdldocument A WSDL XML document.

Example
In the following example, the onLoad event is used to handle the WSDL parsing:

// Load the WebServices class:
load("webservices/WebServices.asc");

// Prepare the WSDL location:
var wsdlURI = "http://www.flash-db.com/services/ws/companyInfo.wsdl";

// Instantiate the web service object by using the WSDL location:
stockService = new WebService(wsdlURI);

// Handle the WSDL parsing and web service instantiation event:
stockService.onLoad = function(wsdl){

wsdlField.text = wsdl;

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

114

}

XML class
The XML class lets you load, parse, send, build, and manipulate XML document trees.

Note: You can load XML files only over HTTP, not over RTMP.

You must use the new XML() constructor to create an XML object before calling any method of the XML class.

An XML document is represented by the XML class. Each element of the document is represented by an XMLNode
object.

The XML and XMLNode objects are modeled after the W3C DOM Level 1 Recommendation. That recommen-
dation specifies a Node interface and a Document interface. The Document interface inherits from the Node
interface, and adds methods such as createElement() and createTextNode(). In ActionScript, the XML and
XMLNode objects are designed to divide functionality along similar lines.

Note: Many code examples for the XML class include trace() statements. Server-side trace() statements are output
to the application log file and to the Live Log panel in the Administration Console.

Availability
Flash Media Server 2

Property summary

Property Description

XML.attributes An object that contains all the attributes of the specified XML object.

XML.childNodes Read-only; an array of the specified XML object’s children.

XML.contentType The MIME content type that is sent to the server when you call the XML.send() or
XML.sendAndLoad() method.

XML.docTypeDecl Specifies information about the XML document’s DOCTYPE declaration.

XML.firstChild Read-only; evaluates the specified XML object and references the first child in the parent
node’s child list.

XML.ignoreWhite When set to true, discards, during the parsing process, text nodes that contain only white
space.

XML.lastChild Read-only; an XMLNode value that references the last child in the node’s child list.

XML.loaded A boolean value; true if the document-loading process initiated by the XML.load() call
completed successfully; otherwise, false.

XML.localName Read-only; the local name portion of the XML node's name.

XML.namespaceURI Read-only; if the XML node has a prefix, the value of the xmlns declaration for that prefix (the
URI), which is typically called the namespace URI.

XML.nextSibling Read-only; an XMLNode value that references the next sibling in the parent node’s child list.

XML.nodeName A string representing the node name of the XML object.

XML.nodeType Read-only; a nodeType value, either 1 for an XML element or 3 for a text node.

XML.nodeValue The node value of the XML object.

http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/level-one-core.html

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

115

Method summary

XML.parentNode Read-only; an XMLNode value that references the parent node of the specified XML object or
returns null if the node has no parent.

XML.prefix Read-only; the prefix portion of the XML node name.

XML.previousSibling Read-only; an XMLNode value that references the previous sibling in the parent node’s child
list.

XML.status A number indicating whether an XML document was successfully parsed into an XML object.

XML.xmlDecl Specifies information about a document’s XML declaration.

Method Description

XML.addRequestHeader()() Adds or changes HTTP request headers (such as Content-Type or SOAPAction) that are sent
with POST actions.

XML.appendChild() Appends the specified node to the XML object’s child list.

XML.cloneNode() Constructs and returns a new XMLNode object of the same type, name, Administration
Console value, and attributes as the specified XML object.

XML.createElement() Creates a new XML element with the name specified in the name parameter.

XML.createTextNode() Creates a new XML text node with the specified text.

XML.getBytesLoaded() Returns the number of bytes loaded (streamed) for the specified XML document.

XML.getBytesTotal() Returns the size of the XML document, in bytes.

XML.getNamespaceForPrefix() Returns the namespace URI that is associated with the specified prefix for the node.

XML.getPrefixForNamespace() Returns the prefix that is associated with the specified namespace URI for the node.

XML.hasChildNodes() Returns true if the specified XML object has child nodes; otherwise, false.

XML.insertBefore() Inserts a new child node into the XML object’s child list, before the specified node.

XML.load() Loads an XML document from a File object or from a URL over HTTP, and replaces the contents
of the specified XML object with the XML data.

XML.parseXML() Parses the XML text specified in the source parameter and populates the specified XML
object with the resulting XML tree.

XML.removeNode() Removes the specified XML object from its parent and deletes all descendants of the node.

XML.send() Encodes the specified XML object into an XML document and sends it to the specified URL by
using the POST method in a browser.

XML.sendAndLoad() Encodes the specified XML object into an XML document, sends it to the specified URL by
using the HTTP POST method, downloads the server’s response, and loads it into the specified
object.

XML.toString() Evaluates the specified XML object, constructs a textual representation of the XML structure,
including the node, children, and attributes, and returns the result as a string.

Property Description

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

116

Event handler summary

XML constructor
new XML([source])

Creates a new XML object. You must use the constructor to create an XML object before you call any of the XML
class methods.

Note: Use the createElement() and createTextNode() methods to add elements and text nodes to an XML
document tree.

Availability
Flash Media Server 2

Parameters
source A string; the XML text to parse to create the new XML object.

Returns
A reference to an XML object.

Example
The following example creates a new, empty XML object:

var my_xml = new XML();

The following example creates an XML object by parsing the XML text specified in the source parameter and
populates the newly created XML object with the resulting XML document tree:

var other_xml = new XML("<state name=\"California\"><city>San Francisco</city></state>");

See also
XML.createElement(), XML.createTextNode()

XML.addRequestHeader()
my_xml.addRequestHeader(headerName, headerValue)
my_xml.addRequestHeader([headerName_1, headerValue_1 ... headerName_n, headerValue_n])

Adds or changes HTTP request headers (such as Content-Type or SOAPAction) that are sent with POST actions. In
the first usage, you pass two strings, headerName and headerValue, to the method. In the second usage, you pass
an array of strings, alternating header names and header values.

If multiple calls are made to set the same header name, each successive value replaces the value set in the previous
call.

Event handler Description

XML.onData() Invoked when XML text has been completely downloaded from the server or when an error
occurs in downloading XML text from a server.

XML.onHTTPStatus() Invoked when Flash Media Interactive Server receives an HTTP status code from the server.

XML.onLoad() Invoked when an XML document is received from the server.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

117

You cannot add or change the following standard HTTP headers by using this method: Accept-Ranges, Age, Allow,
Allowed, Connection, Content-Length, Content-Location, Content-Range, ETag, Host, Last-Modified, Locations,
Max-Forwards, Proxy-Authenticate, Proxy-Authorization, Public, Range, Retry-After, Server, TE, Trailer, Transfer-
Encoding, Upgrade, URI, Vary, Via, Warning, and WWW-Authenticate.

Note: A call to XML.addRequestHeader() that sets a value for the Content-Type header overrides any value set in the
XML.contentType property.

Availability
Flash Media Server 2

Parameters
headerName A string representing an HTTP request header name.

headerValue A string representing the value associated with headerName.

Example
The following example adds a custom HTTP header named SOAPAction with a value of Foo to an XML object
named my_xml:

my_xml.addRequestHeader("SOAPAction", "'Foo'");

The following example creates an array named headers that contains two alternating HTTP headers and their
associated values. The array is passed as a parameter to the addRequestHeader() method.

var headers = new Array("Content-Type", "text/plain", "X-ClientAppVersion", "2.0");
my_xml.addRequestHeader(headers);

XML.appendChild()
my_xml.appendChild(childNode)

Appends the specified node to the XML object’s child list. This method operates directly on the node referenced by
the childNode parameter; it does not append a copy of the node. If the node to be appended already exists in another
tree structure, appending the node to the new location removes it from its current location. If the childNode
parameter refers to a node that already exists in another XML tree structure, the appended child node is placed in
the new tree structure after it is removed from its existing parent node.

Availability
Flash Media Server 2

Parameters
childNode An XMLNode object that represents the node to be moved from its current location to the child list of
the my_xml object.

Returns
A boolean value; true if successful; otherwise, false.

Example
The following example performs these actions:

1 Creates two empty XML documents, doc1 and doc2.

2 Creates a new node, by using the createElement() method, and appends it, by using the appendChild()
method, to the XML document named doc1.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

118

3 Shows how to move a node by using the appendChild() method, by moving the root node from doc1 to doc2.

4 Clones the root node from doc2 and appends it to doc1.

5 Creates a new node and appends it to the root node of the XML document doc1.
var doc1 = new XML();
var doc2 = new XML();

// Create a root node and add it to doc1.
var rootnode = doc1.createElement("root");
doc1.appendChild(rootnode);
trace ("doc1: " + doc1); // output: doc1: <root />
trace ("doc2: " + doc2); // output: doc2:

// Move the root node to doc2.
doc2.appendChild(rootnode);
trace ("doc1: " + doc1); // output: doc1:
trace ("doc2: " + doc2); // output: doc2: <root />

// Clone the root node and append it to doc1.
var clone = doc2.firstChild.cloneNode(true);
doc1.appendChild(clone);
trace ("doc1: " + doc1); // output: doc1: <root />
trace ("doc2: " + doc2); // output: doc2: <root />

// Create a new node to append to root node (named clone) of doc1.
var newNode = doc1.createElement("newbie");
clone.appendChild(newNode);
trace ("doc1: " + doc1); // output: doc1: <root><newbie /></root>

XML.attributes
my_xml.attributes

An object that contains all the attributes of the specified XML object. Associative arrays use keys as indexes, not
ordinal integer indexes that are used by regular arrays. In the XML.attributes associative array, the key index is a
string representing the name of the attribute. The value associated with that key index is the string value associated
with that attribute. For example, if you have an attribute named color, you would retrieve that attribute’s value by
using the color as the key index, as shown in the following code:

var myColor = doc.firstChild.attributes.color

Availability
Flash Media Server 2

Example
The following example shows the XML attribute names:

// Create a tag called 'mytag' with
// an attribute called 'name' with value 'Val'.
var doc = new XML("<mytag name=\"Val\"> item </mytag>");

// Assign the value of the 'name' attribute to variable y.
var y = doc.firstChild.attributes.name;
trace (y);// output: Val

// Create a new attribute named 'order' with value 'first'.
doc.firstChild.attributes.order = "first";

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

119

// Assign the value of the 'order' attribute to variable z.
var z = doc.firstChild.attributes.order
trace(z);// output: first

XML.childNodes
my_xml.childNodes

Read-only; an array of the specified XML object’s children. Each element in the array is a reference to an XML object
that represents a child node. This read-only property cannot be used to manipulate child nodes. Use the
XML.appendChild(), XML.insertBefore(), and XML.removeNode() methods to manipulate child nodes.

This property is undefined for text nodes (nodeType == 3).

Availability
Flash Media Server 2

Example
The following example shows how to use the XML.childNodes property to return an array of child nodes:

// Create a new XML document.
var doc = new XML();

// Create a root node.
var rootNode = doc.createElement("rootNode");

// Create three child nodes.
var oldest = doc.createElement("oldest");
var middle = doc.createElement("middle");
var youngest = doc.createElement("youngest");

// Add the rootNode as the root of the XML document tree.
doc.appendChild(rootNode);

// Add each of the child nodes as children of rootNode.
rootNode.appendChild(oldest);
rootNode.appendChild(middle);
rootNode.appendChild(youngest);

// Create an array and use rootNode to populate it.
var firstArray:Array = doc.childNodes;
trace (firstArray);
// Output: <rootNode><oldest /><middle /><youngest /></rootNode>

// Create another array and use the child nodes to populate it.
var secondArray = rootNode.childNodes;
trace(secondArray);
// Output: <oldest />,<middle />,<youngest />

See also
XML.nodeType

XML.cloneNode()
my_xml.cloneNode(deep)

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

120

Constructs and returns a new XMLNode object of the same type, name, Administration Console value, and
attributes as the specified XML object. If deep is set to true, all child nodes are recursively cloned, resulting in an
exact copy of the original object’s document tree.

The clone of the node that is returned is no longer associated with the tree of the cloned item. Consequently,
nextSibling, parentNode, and previousSibling have a value of null. If the deep parameter is set to false, or
if my_xml has no child nodes, firstChild and lastChild are also null.

Availability
Flash Media Server 2

Parameters
deep A boolean value; if set to true, the children of the specified XML object will be recursively cloned; otherwise,
false.

Returns
An XMLNode object.

Example
The following example shows how to use the XML.cloneNode() method to create a copy of a node:

// Create a new XML document.
var doc = new XML();

// Create a root node.
var rootNode = doc.createElement("rootNode");

// Create three child nodes.
var oldest = doc.createElement("oldest");
var middle = doc.createElement("middle");
var youngest = doc.createElement("youngest");

// Add the rootNode as the root of the XML document tree.
doc.appendChild(rootNode);

// Add each of the child nodes as children of rootNode.
rootNode.appendChild(oldest);
rootNode.appendChild(middle);
rootNode.appendChild(youngest);

// Create a copy of the middle node by using cloneNode().
var middle2 = middle.cloneNode(false);

// Insert the clone node into rootNode between
// the middle and youngest nodes.
rootNode.insertBefore(middle2, youngest);
trace(rootNode);
// Output (with line breaks added):
// <rootNode>
//<oldest />
//<middle />
//<middle />
//<youngest />
// </rootNode>

// Create a copy of rootNode by using cloneNode() to demonstrate a deep copy.
var rootClone = rootNode.cloneNode(true);

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

121

// Insert the clone, which contains all child nodes, to rootNode.
rootNode.appendChild(rootClone);
trace(rootNode);
// Output (with line breaks added):
// <rootNode>
// <oldest/>
// <middle/>
// <middle/>
// <youngest/>
// <rootNode>
//<oldest/>
//<middle/>
//<middle/>
//<youngest/>
// </rootNode>
// </rootNode>

XML.contentType
my_xml.contentType

The MIME content type that is sent to the server when you call the XML.send() or XML.sendAndLoad() method.
The default is application/x-www-form-urlencoded, which is the standard MIME content type used for most HTML
forms.

Availability
Flash Media Server 2

Example
The following example creates a new XML document and checks its default content type:

// Create a new XML document.
var doc = new XML();

// Trace the default content type.
trace(doc.contentType);

// output: application/x-www-form-urlencoded

XML.createElement()
my_xml.createElement(name)

Creates a new XML element with the name specified in the name parameter. The new element initially has no parent,
children, or siblings. The method returns a reference to the newly created XML object that represents the element.
This method and the XML.createTextNode() method are the constructor methods for creating nodes for an XML
object.

Availability
Flash Media Server 2

Parameters
name A string indicating the tag name of the XML element being created.

Returns
An XML node; an XML element.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

122

Example
The following example creates three XMLNode objects by using the createElement() method:

// Create an XML document.
var doc = new XML();

// Create three XML nodes by using createElement().
var element1 = doc.createElement("element1");
var element2 = doc.createElement("element2");
var element3 = doc.createElement("element3");

// Place the new nodes into the XML tree.
doc.appendChild(element1);
element1.appendChild(element2);
element1.appendChild(element3);

trace(doc);
// Output: <element1><element2 /><element3 /></element1>

See also
XML.createTextNode()

XML.createTextNode()
my_xml.createTextNode(text)

Creates a new XML text node with the specified text. The new node initially has no parent, and text nodes cannot
have children or siblings. This method returns a reference to the XML object that represents the new text node. This
method and the XML.createElement() method are the constructor methods for creating nodes for an XML object.

Availability
Flash Media Server 2

Parameters
text A string; the text used to create the new text node.

Returns
An XML node.

Example
The following example creates two XML text nodes by using the createTextNode() method and places them into
existing XML nodes:

// Create an XML document.
var doc = new XML();

// Create three XML nodes by using createElement().
var element1 = doc.createElement("element1");
var element2 = doc.createElement("element2");
var element3 = doc.createElement("element3");

// Place the new nodes into the XML tree.
doc.appendChild(element1);
element1.appendChild(element2);
element1.appendChild(element3);

// Create two XML text nodes by using createTextNode().

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

123

var textNode1 = doc.createTextNode("textNode1");
var textNode2 = doc.createTextNode("textNode2");

// Place the new nodes into the XML tree.
element2.appendChild(textNode1);
element3.appendChild(textNode2);

trace(doc);
// Output (with line breaks added between tags):
// <element1>
//<element2>textNode1</element2>
//<element3>textNode2</element3>
// </element1>

See also
XML.createElement()

XML.docTypeDecl
my_xml.docTypeDecl

Specifies information about the XML document’s DOCTYPE declaration. After the XML text has been parsed into an
XML object, the XML.docTypeDecl property of the XML object is set to the text of the XML document’s DOCTYPE
declaration (for example, <!DOCTYPE greeting SYSTEM "hello.dtd">). This property is set by using a string
representation of the DOCTYPE declaration, not an XMLNode object.

The ActionScript XML parser is not a validating parser. The DOCTYPE declaration is read by the parser and stored in
the XML.docTypeDecl property, but no DTD validation is performed.

If no DOCTYPE declaration occurs during a parse operation, the XML.docTypeDecl property is set to undefined. The
XML.toString() method outputs the contents of XML.docTypeDecl immediately after the XML declaration stored
in XML.xmlDecl and before any other text in the XML object. If XML.docTypeDecl is undefined, there is no
DOCTYPE declaration.

Availability
Flash Media Server 2

Example
The following example uses the XML.docTypeDecl property to set the DOCTYPE declaration for an XML object:

my_xml.docTypeDecl = "<!DOCTYPE greeting SYSTEM \"hello.dtd\">";

XML.firstChild
my_xml.firstChild

Read-only; evaluates the specified XML object and references the first child in the parent node’s child list. If the node
does not have children, this property is null. If the node is a text node, this property is null. You cannot use this
property to manipulate child nodes; use the appendChild(), insertBefore(), and removeNode() methods
instead.

Availability
Flash Media Server 2

Example
The following example shows how to use XML.firstChild to loop through a node’s child nodes:

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

124

// Create a new XML document.
var doc = new XML();

// Create a root node.
var rootNode = doc.createElement("rootNode");

// Create three child nodes.
var oldest = doc.createElement("oldest");
var middle = doc.createElement("middle");
var youngest = doc.createElement("youngest");

// Add the rootNode as the root of the XML document tree.
doc.appendChild(rootNode);

// Add each of the child nodes as children of rootNode.
rootNode.appendChild(oldest);
rootNode.appendChild(middle);
rootNode.appendChild(youngest);

// Use firstChild to iterate through the child nodes of rootNode.
for (var aNode = rootNode.firstChild; aNode != null; aNode = aNode.nextSibling) {

trace(aNode);
}

// Output:
// <oldest />
// <middle />
// <youngest />

XML.getBytesLoaded()
my_xml.getBytesLoaded()

Returns the number of bytes loaded (streamed) for the XML document. You can compare the value of
getBytesLoaded() with the value of getBytesTotal() to determine what percentage of an XML document has
loaded.

Availability
Flash Media Server 2

Returns
A number.

See also
XML.getBytesTotal()

XML.getBytesTotal()
my_xml.getBytesTotal()

Returns the size of the XML document, in bytes.

Availability
Flash Media Server 2

Returns
A number.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

125

See also
XML.getBytesTotal()

XML.getNamespaceForPrefix()
my_xml.getNamespaceForPrefix(prefix)

Returns the namespace URI that is associated with the specified prefix for the node. To determine the URI,
getPrefixForNamespace() searches up the XML hierarchy from the node, as necessary, and returns the
namespace URI of the first xmlns declaration for the given prefix.

If no namespace is defined for the specified prefix, the method returns null.

If you specify an empty string ("") as the prefix and a default namespace is defined for the node (as in
xmlns="http://www.example.com/"), the method returns that default namespace URI.

Availability
Flash Media Server 2

Parameters
prefix A string; the prefix for which the method returns the associated namespace.

Returns
A string.

Example
The following example creates a very simple XML object and outputs the result of a call to
getNamespaceForPrefix():

function createXML() {
var str = "<Outer xmlns:exu=\"http://www.example.com/util\">" + "<exu:Child id='1' />"

+ "<exu:Child id='2' />" + "<exu:Child id='3' />" + "</Outer>";
return new XML(str).firstChild;

}

var xml = createXML();
trace(xml.getNamespaceForPrefix("exu")); // output: http://www.example.com/util
trace(xml.getNamespaceForPrefix("")); // output: null

See also
XML.getPrefixForNamespace()

XML.getPrefixForNamespace()
my_xml.getPrefixForNamespace(nsURI)

Returns the prefix that is associated with the specified namespace URI for the node. To determine the prefix,
getPrefixForNamespace() searches up the XML hierarchy from the node, as necessary, and returns the prefix of
the first xmlns declaration with a namespace URI that matches nsURI.

If there is no xmlns assignment for the given URI, the method returns null. If there is an xmlns assignment for the
given URI but no prefix is associated with the assignment, the method returns an empty string ("").

Availability
Flash Media Server 2

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

126

Parameters
nsURI A string; the namespace URI for which the method returns the associated prefix.

Returns
A string.

Example
The following example creates a very simple XML object and outputs the result of a call to the
getPrefixForNamespace() method. The Outer XML node, which is represented by the xmlDoc variable, defines
a namespace URI and assigns it to the exu prefix. Calling the getPrefixForNamespace() method with the defined
namespace URI ("http://www.example.com/util") returns the prefix exu, but calling this method with an undefined
URI ("http://www.example.com/other") returns null. The first exu:Child node, which is represented by the
child1 variable, also defines a namespace URI ("http://www.example.com/child"), but does not assign it to a prefix.
Calling this method on the defined, but unassigned, namespace URI returns an empty string.

function createXML() {
var str = "<Outer xmlns:exu=\"http://www.example.com/util\">"

+ "<exu:Child id='1' xmlns=\"http://www.example.com/child\"/>"
+ "<exu:Child id='2' />"
+ "<exu:Child id='3' />"
+ "</Outer>";

return new XML(str).firstChild;
}

var xmlDoc = createXML();
trace(xmlDoc.getPrefixForNamespace("http://www.example.com/util")); // output: exu
trace(xmlDoc.getPrefixForNamespace("http://www.example.com/other")); // output: null

var child1 = xmlDoc.firstChild;
trace(child1.getPrefixForNamespace("http://www.example.com/child")); // output: [empty
string]
trace(child1.getPrefixForNamespace("http://www.example.com/other")); // output: null

See also
XML.getNamespaceForPrefix()

XML.hasChildNodes()
my_xml.hasChildNodes()

Returns true if the specified XML object has child nodes; otherwise, false.

Availability
Flash Media Server 2

Returns
A boolean value.

Example
The following example creates a new XML packet. If the root node has child nodes, the code loops over each child
node to display the name and value of the node.

var my_xml = new
XML("<login><username>hank</username><password>rudolph</password></login>");
if (my_xml.firstChild.hasChildNodes()) {

// Use firstChild to iterate through the child nodes of rootNode.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

127

for (var aNode = my_xml.firstChild.firstChild; aNode != null; aNode=aNode.nextSibling) {
if (aNode.nodeType == 1) {

trace(aNode.nodeName+":\t"+aNode.firstChild.nodeValue);
}

}
}

The following output appears:

username:hank
password:rudolph

XML.ignoreWhite
my_xml.ignoreWhite
XML.prototype.ignoreWhite

When set to true, discards, during the parsing process, text nodes that contain only white space. The default setting
is false. Text nodes with leading or trailing white spaces are unaffected.

Usage 1: You can set the ignoreWhite property for individual XML objects, as shown in the following code:

my_xml.ignoreWhite = true;

Usage 2: You can set the default ignoreWhite property for XML objects, as shown in the following code:

XML.prototype.ignoreWhite = true;

Availability
Flash Media Server 2

Example
The following example loads an XML file with a text node that contains only white space; the foyer tag contains 14
space characters. To run this example, create a text file named flooring.xml and copy the following tags into it:

<house>
 <kitchen> ceramic tile </kitchen>
 <bathroom> linoleum </bathroom>
 <foyer></foyer>
</house>

The following is the server-side code:

// Create a new XML object.
var flooring = new XML();

// Set the ignoreWhite property to true (the default value is false).
flooring.ignoreWhite = true;

// After loading is complete, trace the XML object.
flooring.onLoad = function(success) {

trace(flooring);
}

// Load the XML into the flooring object.
flooring.load("flooring.xml");

/* output (line breaks added for clarity):
<house>
<kitchen>ceramic tile</kitchen>
<bathroom>linoleum</bathroom>
</foyer>

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

128

</house>
*/

If you change the setting of flooring.ignoreWhite to false, or simply remove that line of code entirely, the 14
space characters in the foyer tag are preserved:

...
// Set the ignoreWhite property to false (the default value).
flooring.ignoreWhite = false;
...
/* output (line breaks added for clarity):
<house>

<kitchen> ceramic tile </kitchen>
<bathroom>linoleum</bathroom>
<foyer></foyer>

</house>
*/

XML.insertBefore()
my_xml.insertBefore(childNode, beforeNode)

Inserts a new child node into the XML object’s child list, before the beforeNode node. If beforeNode is not a child
of my_xml, the insertion fails.

Availability
Flash Media Server 2

Parameters
childNode The XMLNode object to be inserted.

beforeNode The XMLNode object before the insertion point for the childNode node.

Returns
A boolean value; true if successful; otherwise, false.

Example
The following example is an excerpt from the XML.cloneNode() example:

// Create a copy of the middle node by using cloneNode().
var middle2 = middle.cloneNode(false);

// Insert the clone node into rootNode
// between the middle and youngest nodes.
rootNode.insertBefore(middle2, youngest);

XML.lastChild
my_xml.lastChild

Read-only; an XMLNode value that references the last child in the node’s child list. If the node does not have
children, the XML.lastChild property is null. You cannot use this property to manipulate child nodes; use the
appendChild(), insertBefore(), and removeNode() methods instead.

Availability
Flash Media Server 2

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

129

Example
The following example uses the XML.lastChild property to iterate through the child nodes of an XMLNode object,
starting with the last item in the node’s child list and ending with the first child of the node’s child list:

// Create a new XML document.
var doc = new XML();

// Create a root node.
var rootNode = doc.createElement("rootNode");

// Create three child nodes.
var oldest = doc.createElement("oldest");
var middle = doc.createElement("middle");
var youngest = doc.createElement("youngest");

// Add the rootNode as the root of the XML document tree.
doc.appendChild(rootNode);

// Add each of the child nodes as children of rootNode.
rootNode.appendChild(oldest);
rootNode.appendChild(middle);
rootNode.appendChild(youngest);

// Use lastChild to iterate through the child nodes of rootNode.
for (var aNode = rootNode.lastChild; aNode != null; aNode = aNode.previousSibling) {

trace(aNode);
}

/*
output:
<youngest />
<middle />
<oldest />
*/

The following example creates a new XML packet and uses the XML.lastChild property to iterate through the child
nodes of the root node:

// Create a new XML document.
var doc = new XML("<rootNode><oldest /><middle /><youngest /></rootNode>");

var rootNode = doc.firstChild;

// Use lastChild to iterate through the child nodes of rootNode.
for (var aNode = rootNode.lastChild; aNode != null; aNode=aNode.previousSibling) {

trace(aNode);
}
/*
output:
<youngest />
<middle />
<oldest />
*/

XML.load()
my_xml.load(url)

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

130

Loads an XML document from a File object or from a URL over HTTP, and replaces the contents of the specified
XML object with the XML data. The load process is asynchronous; it does not finish immediately after the load()
method is executed.

When the load() method is executed, the XML object property loaded is set to false. When the XML data finishes
downloading, the loaded property is set to true and the onLoad() event handler is invoked. The XML data is not
parsed until it is completely downloaded. If the XML object previously contained any XML trees, they are discarded.

You can define a custom function that is executed when the onLoad() event handler of the XML object is invoked.

Availability
Flash Media Server 2

Parameters
url A File object or a URL where the XML document to be loaded is located. If the SWF file that issues this call is
running in a web browser, url must be in the same domain as the SWF file. You cannot use a file path for this
parameter.

Returns
A boolean value; true if successful; otherwise, false.

Example
The following simple example uses the XML.load() method:

// Create a new XML object.
var flooring = new XML();

// Set the ignoreWhite property to true (the default value is false).
flooring.ignoreWhite = true;

// After loading is complete, trace the XML object.
flooring.onLoad = function(success) {

trace(flooring);
};

// Load the XML into the flooring object.
flooring.load("http://somehttpserver/flooring.xml");

For the contents of the flooring.xml file, and the output that this example produces, see the example for
XML.ignoreWhite.

XML.loaded
my_xml.loaded

A boolean value; true if the document-loading process initiated by the XML.load() call completed successfully;
otherwise, false.

Availability
Flash Media Server 2

Example
The following example uses the XML.loaded property in a simple script:

var my_xml = new XML();
my_xml.ignoreWhite = true;

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

131

my_xml.onLoad = function(success) {
trace("success: "+success);
trace("loaded:"+my_xml.loaded);
trace("status:"+my_xml.status);

};
my_xml.load("http://www.flash-mx.com/mm/problems/products.xml");

Information is written to the log file when the onLoad() handler is invoked. If the call completes successfully, the
loaded status true is written to the log file, as shown in the following example:

success: true
loaded:true
status:0

XML.localName
my_xml.localName

Read-only; the local name portion of the XML node's name. This is the element name without the namespace prefix.
For example, the node <contact:mailbox/>bob@example.com</contact:mailbox> has the local name
mailbox and the prefix contact, which comprise the full element name contact.mailbox.

You can access the namespace prefix by using the XML.prefix property of the XML node object. The XML.nodeName
property returns the full name, including the prefix and the local name.

Availability
Flash Media Server 2

Example
This example uses a SWF file and an XML file located in the same directory. The XML file, named SoapSample.xml,
contains the following code:

<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2001/12/soap-envelope">

<soap:Body xmlns:w="http://www.example.com/weather">
<w:GetTemperature>

<w:City>San Francisco</w:City>
</w:GetTemperature>

</soap:Body>
</soap:Envelope>

The source for the SWF file contains the following script (note the comments for the Output strings):

var xmlDoc = new XML()
xmlDoc.ignoreWhite = true;
xmlDoc.load("http://www.example.com/SoapSample.xml")
xmlDoc.onLoad = function(success) {

var tempNode = xmlDoc.childNodes[0].childNodes[0].childNodes[0];
trace("w:GetTemperature localname: " + tempNode.localName);
// Output: ... GetTemperature
var soapEnvNode = xmlDoc.childNodes[0];
trace("soap:Envelope localname: " + soapEnvNode.localName);
// Output: ... Envelope

};

See also
XML.nodeName, XML.prefix

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

132

XML.namespaceURI
my_xml.namespaceURI

Read-only; if the XML node has a prefix, the value of the xmlns declaration for that prefix (the URI), which is
typically called the namespace URI. The xmlns declaration is in the current node or in a node higher in the XML
hierarchy.

If the XML node does not have a prefix, the value of the namespaceURI property depends on whether a default
namespace is defined (as in xmlns="http://www.example.com/"). If there is a default namespace, the value of the
namespaceURI property is the value of the default namespace. If there is no default namespace, the namespaceURI
property for that node is an empty string ("").

You can use the XML.getNamespaceForPrefix() method to identify the namespace associated with a specific
prefix. The namespaceURI property returns the prefix associated with the node name.

Availability
Flash Media Server 2

Example
The following example shows how the namespaceURI property is affected by the use of prefixes. The XML file used
in the example is named SoapSample.xml and contains the following tags:

<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2001/12/soap-envelope">

<soap:Body xmlns:w="http://www.example.com/weather">
<w:GetTemperature>

<w:City>San Francisco</w:City>
</w:GetTemperature>

</soap:Body>
</soap:Envelope>

The source for the Server-Side ActionScript Communication File (ASC file) contains the following script (note the
comments for the Output strings). For tempNode, which represents the w:GetTemperature node, the value of
namespaceURI is defined in the soap:Body tag. For soapBodyNode, which represents the soap:Body node, the
value of namespaceURI is determined by the definition of the soap prefix in the node above it, rather than the
definition of the w prefix that the soap:Body node contains.

var xmlDoc = new XML();
xmlDoc.load("http://www.example.com/SoapSample.xml");
xmlDoc.ignoreWhite = true;
xmlDoc.onLoad = function(success:Boolean) {

var tempNode:XMLNode = xmlDoc.childNodes[0].childNodes[0].childNodes[0];
trace("w:GetTemperature namespaceURI: " + tempNode.namespaceURI);
// Output: ... http://www.example.com/weather

trace("w:GetTemperature soap namespace: " + tempNode.getNamespaceForPrefix("soap"));
// Output: ... http://www.w3.org/2001/12/soap-envelope

var soapBodyNode = xmlDoc.childNodes[0].childNodes[0];
trace("soap:Envelope namespaceURI: " + soapBodyNode.namespaceURI);
// Output: ... http://www.w3.org/2001/12/soap-envelope

}:

The following example uses XML tags without prefixes. It uses a SWF file and an XML file located in the same
directory. The XML file, named NoPrefix.xml, contains the following tags:

<?xml version="1.0"?>
<rootnode>

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

133

<simplenode xmlns="http://www.w3.org/2001/12/soap-envelope">
<innernode/>

</simplenode>
</rootnode>

The source for the server-side script file contains the following code (note the comments for the Output strings). The
rootNode node does not have a default namespace, so its namespaceURI value is an empty string. The simpleNode
node defines a default namespace, so its namespaceURI value is the default namespace. The innerNode node does
not define a default namespace, but uses the default namespace defined by simpleNode, so its namespaceURI value
is the same as that of simpleNode.

var xmlDoc = new XML()
xmlDoc.load("http://www.example.com/NoPrefix.xml");
xmlDoc.ignoreWhite = true;
xmlDoc.onLoad = function(success) {

var rootNode = xmlDoc.childNodes[0];
trace("rootNode Node namespaceURI: " + rootNode.namespaceURI);
// Output: [empty string]

var simpleNode = xmlDoc.childNodes[0].childNodes[0];
trace("simpleNode Node namespaceURI: " + simpleNode.namespaceURI);
// Output: ... http://www.w3.org/2001/12/soap-envelope

var innerNode = xmlDoc.childNodes[0].childNodes[0].childNodes[0];
trace("innerNode Node namespaceURI: " + innerNode.namespaceURI);
// Output: ... http://www.w3.org/2001/12/soap-envelope

};

XML.nextSibling
my_xml.nextSibling

Read-only; an XMLNode value that references the next sibling in the parent node’s child list. If the node does not
have a next sibling node, this property is null. This property cannot be used to manipulate child nodes; use the
appendChild(), insertBefore(), and removeNode() methods to manipulate child nodes.

Availability
Flash Media Server 2

Example
The following example is an excerpt from the example for the XML.firstChild property. It shows how you can use
the XML.nextSibling property to loop through an XMLNode object’s child nodes.

for (var aNode = rootNode.firstChild; aNode != null; aNode = aNode.nextSibling) {
trace(aNode);

}

XML.nodeName
my_xml.nodeName

A string representing the node name of the XML object. If the XML object is an XML element (nodeType==1),
nodeName is the name of the tag that represents the node in the XML file. For example, TITLE is the node name of
an HTML TITLE tag. If the XML object is a text node (nodeType==3), nodeName is null.

Availability
Flash Media Server 2

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

134

Example
The following example creates an element node and a text node, and checks the node name of each:

// Create an XML document.
var doc = new XML();

// Create an XML node by using createElement().
var myNode = doc.createElement("rootNode");

// Place the new node into the XML tree.
doc.appendChild(myNode);

// Create an XML text node by using createTextNode().
var myTextNode = doc.createTextNode("textNode");

// Place the new node into the XML tree.
myNode.appendChild(myTextNode);

trace(myNode.nodeName);
trace(myTextNode.nodeName);

/*
output:
rootNode
null
*/

The following example creates a new XML packet. If the root node has child nodes, the code loops over each child
node to display the name and value of the node. Add the following ActionScript to your ASC file:

var my_xml = new
XML("<login><username>hank</username><password>rudolph</password></login>");
if (my_xml.firstChild.hasChildNodes()) {

// Use firstChild to iterate through the child nodes of rootNode.
for (var aNode = my_xml.firstChild.firstChild; aNode != null; aNode=aNode.nextSibling) {

if (aNode.nodeType == 1) {
trace(aNode.nodeName+":\t"+aNode.firstChild.nodeValue);

}
}

}

The following node names appear:

username:hank
password:rudolph

XML.nodeType
my_xml.nodeType

Read-only; a nodeType value, either 1 for an XML element or 3 for a text node.

The nodeType property is a numeric value from the NodeType enumeration in the W3C DOM Level 1 Recommen-
dation. The following table lists the values:

http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/level-one-core.html
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/level-one-core.html

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

135

In Flash Player, the built-in XML class supports only 1 (ELEMENT_NODE) and 3 (TEXT_NODE).

Availability
Flash Media Server 2

Example
The following example creates an element node and a text node and checks the node type of each:

// Create an XML document.
var doc = new XML();

// Create an XML node by using createElement().
var myNode = doc.createElement("rootNode");

// Place the new node into the XML tree.
doc.appendChild(myNode);

// Create an XML text node by using createTextNode().
var myTextNode = doc.createTextNode("textNode");

// Place the new node into the XML tree.
myNode.appendChild(myTextNode);

trace(myNode.nodeType);
trace(myTextNode.nodeType);

/*
output:
1
3
*/

XML.nodeValue
my_xml.nodeValue

Integer value Defined constant

1 ELEMENT_NODE

2 ATTRIBUTE_NODE

3 TEXT_NODE

4 CDATA_SECTION_NODE

5 ENTITY_REFERENCE_NODE

6 ENTITY_NODE

7 PROCESSING_INSTRUCTION_NODE

8 COMMENT_NODE

9 DOCUMENT_NODE

10 DOCUMENT_TYPE_NODE

11 DOCUMENT_FRAGMENT_NODE

12 NOTATION_NODE

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

136

The node value of the XML object. If the XML object is a text node, the nodeType is 3, and the nodeValue is the text
of the node. If the XML object is an XML element (nodeType is 1), nodeValue is null and read-only.

Availability
Flash Media Server 2

Example
The following example creates an element node and a text node and checks the node value of each:

// Create an XML document.
var doc = new XML();

// Create an XML node by using createElement().
var myNode = doc.createElement("rootNode");

// Place the new node into the XML tree.
doc.appendChild(myNode);

// Create an XML text node by using createTextNode().
var myTextNode = doc.createTextNode("myTextNode");

// Place the new node into the XML tree.
myNode.appendChild(myTextNode);

trace(myNode.nodeValue);
trace(myTextNode.nodeValue);

/*
output:
null
myTextNode
*/

The following example creates and parses an XML packet. The code loops through each child node and displays the
node value by using the firstChild property and firstChild.nodeValue.

var my_xml = new
XML("<login><username>morton</username><password>good&evil</password></login>");
trace("using firstChild:");
for (var i = 0; i<my_xml.firstChild.childNodes.length; i++) {

trace("\t"+my_xml.firstChild.childNodes[i].firstChild);
}
trace("");
trace("using firstChild.nodeValue:");
for (var i = 0; i<my_xml.firstChild.childNodes.length; i++) {

trace("\t"+my_xml.firstChild.childNodes[i].firstChild.nodeValue);
}

The following information is written to the log file:

using firstChild:
morton
good&evil

using firstChild.nodeValue:
morton
good&evil

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

137

XML.onData()
my_xml.onData = function(src) {}

Invoked when XML text has been completely downloaded from the server or when an error occurs in downloading
XML text from a server. This handler is invoked before the XML is parsed, and you can use it to call a custom parsing
routine instead of using the Flash XML parser. The src parameter is a string that contains XML text downloaded
from the server, unless an error occurs during the download. In this situation, the src parameter is undefined.

By default, the XML.onData() event handler invokes XML.onLoad(). You can override the XML.onData() event
handler with custom behavior, but XML.onLoad() is not called unless you call it in your XML.onData() implemen-
tation.

Availability
Flash Media Server 2

Parameters
src A string or undefined; the raw data, usually in XML format, that is sent by the server.

Example
The following example shows what the XML.onData() event handler looks like by default:

XML.prototype.onData = function (src) {
if (src == undefined) {

this.onLoad(false);
} else {

this.parseXML(src);
this.loaded = true;
this.onLoad(true);

}
};

You can override the XML.onData() event handler to intercept the XML text without parsing it.

XML.onHTTPStatus()
myXML.onHTTPStatus(httpStatus){}

Invoked when Flash Media Interactive Server receives an HTTP status code from the server. This handler lets you
capture and act on HTTP status codes.

The onHTTPStatus() handler is invoked before onData(), which triggers calls to onLoad() with a value of
undefined if the load fails. After onHTTPStatus() is triggered, onData() is always triggered, whether or not you
override onHTTPStatus(). To best use the onHTTPStatus() handler, you should write a function to catch the result
of the onHTTPStatus() call; you can then use the result in your onData() and onLoad() handlers. If
onHTTPStatus() is not invoked, this indicates that Flash Media Server did not try to make the URL request.

If Flash Media Interactive Server cannot get a status code from the server, or if it cannot communicate with the
server, the default value of 0 is passed to your ActionScript code.

Availability
Flash Media Server 2

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

138

Parameters
httpStatus A number; the HTTP status code returned by the server. For example, a value of 404 indicates that
the server has not found a match for the requested URI. HTTP status codes can be found in sections 10.4 and 10.5
of the HTTP Specification at ftp://ftp.isi.edu/in-notes/rfc2616.txt.

Example
The following example shows how to use onHTTPStatus() to help with debugging. The example collects HTTP
status codes and assigns their value and type to an instance of the XML object. (This example creates the instance
members this.httpStatus and this.httpStatusType at runtime.) The onData() handler uses these instance
members to trace information about the HTTP response that can be useful in debugging.

var myXml = new XML();

myXml.onHTTPStatus = function(httpStatus) {
this.httpStatus = httpStatus;
if(httpStatus < 100) {

this.httpStatusType = "flashError";
}
else if(httpStatus < 200) {

this.httpStatusType = "informational";
}
else if(httpStatus < 300) {

this.httpStatusType = "successful";
}
else if(httpStatus < 400) {

this.httpStatusType = "redirection";
}
else if(httpStatus < 500) {

this.httpStatusType = "clientError";
}
else if(httpStatus < 600) {

this.httpStatusType = "serverError";
}

};

myXml.onData = function(src) {
trace(">> " + this.httpStatusType + ": " + this.httpStatus);
if(src != undefined) {

this.parseXML(src);
this.loaded = true;
this.onLoad(true);

} else {
this.onLoad(false);

}
};

myXml.onLoad = function(success) {
// Insert code here.

}

myXml.load("http://weblogs.macromedia.com/mxna/xml/rss.cfm?query=byMostRecent&languages=1"
);

See also
LoadVars.onHTTPStatus(), XML.send(), XML.sendAndLoad()

ftp://ftp.isi.edu/in-notes/rfc2616.txt

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

139

XML.onLoad()
my_xml.onLoad = function (success) {}

Invoked when an XML document is received from the server. If the XML document is received successfully, the
success parameter is true. If the document was not received, or if an error occurred in receiving the response from
the server, the success parameter is false. The default implementation of this method is not active. To override
the default implementation, you must assign a function that contains custom actions.

Availability
Flash Media Server 2

Parameters
success A boolean value; true if the XML object successfully loads with an XML.load() or XML.sendAndLoad()
operation; otherwise, false.

Example
The following example includes ActionScript for a simple e-commerce storefront application. The sendAndLoad()
method transmits an XML element that contains the user’s name and password and uses an XML.onLoad() handler
to process the reply from the server.

var login_str = "<login username=\""+username_txt.text+"\"
password=\""+password_txt.text+"\" />";
var my_xml = new XML(login_str);
var myLoginReply_xml = new XML();
myLoginReply_xml.ignoreWhite = true;
myLoginReply_xml.onLoad = function(success){

if (success) {
if ((myLoginReply_xml.firstChild.nodeName == "packet") &&

 (myLoginReply_xml.firstChild.attributes.success == "true")) {
gotoAndStop("loggedIn");

} else {
gotoAndStop("loginFailed");

}
} else {

gotoAndStop("connectionFailed");
}

};
my_xml.sendAndLoad("http://www.flash-mx.com/mm/login_xml.cfm", myLoginReply_xml);

See also
XML.load(), XML.sendAndLoad()

XML.parentNode
my_xml.parentNode

Read-only; an XMLNode value that references the parent node of the specified XML object or returns null if the
node has no parent. This property cannot be used to manipulate child nodes; use the appendChild(),
insertBefore(), and removeNode() methods instead.

Availability
Flash Media Server 2

Example
The following example creates an XML packet and writes the parent node of the username node to the log file:

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

140

var my_xml = new
XML("<login><username>morton</username><password>good&evil</password></login>");

// The first child is the <login /> node.
var rootNode = my_xml.firstChild;

// The first child of the root is the <username /> node.
var targetNode = rootNode.firstChild;
trace("the parent node of '"+targetNode.nodeName+"' is: "+targetNode.parentNode.nodeName);
trace("contents of the parent node are:\n"+targetNode.parentNode);

/* output (line breaks added for clarity):

the parent node of 'username' is: login
contents of the parent node are:
<login>

<username>morton</username>
<password>good&evil</password>

</login>

*/

XML.parseXML()
my_xml.parseXML(source)

Parses the XML text specified in the source parameter and populates the specified XML object with the resulting
XML tree. Any existing trees in the XML object are discarded.

Availability
Flash Media Server 2

Parameters
source A string; the XML text to be parsed and passed to the specified XML object.

Returns
A boolean value; true if successful, otherwise, false.

Example
The following example creates and parses an XML packet:

var xml_str = "<state name=\"California\"><city>San Francisco</city></state>"

// Defining the XML source within the XML constructor:
var my1_xml = new XML(xml_str);
trace(my1_xml.firstChild.attributes.name); // output: California

// Defining the XML source by using the XML.parseXML method:
var my2_xml = new XML();
my2_xml.parseXML(xml_str);
trace(my2_xml.firstChild.attributes.name);
// output: California

XML.prefix
my_xml.prefix

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

141

Read-only; the prefix portion of the XML node name. For example, in the node
<contact:mailbox/>bob@example.com</contact:mailbox>, the prefix contact and the local name mailbox
comprise the full element name contact.mailbox.

Availability
Flash Media Server 2

Example
A directory contains a server-side script file and an XML file. The XML file, named SoapSample.xml, contains the
following code:

<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2001/12/soap-envelope">
<soap:Body xmlns:w="http://www.example.com/weather">
<w:GetTemperature>
<w:City>San Francisco</w:City>
</w:GetTemperature>
</soap:Body>
</soap:Envelope>

The source for the server-side script file contains the following code (note the comments for the Output strings):

var xmlDoc = new XML();
xmlDoc.ignoreWhite = true;
xmlDoc.load("http://www.example.com/SoapSample.xml");
xmlDoc.onLoad = function(success) {

var tempNode = xmlDoc.childNodes[0].childNodes[0].childNodes[0];
trace("w:GetTemperature prefix: " + tempNode.prefix); // Output: ... w
var soapEnvNode = xmlDoc.childNodes[0];
trace("soap:Envelope prefix: " + soapEnvNode.prefix); // Output: ... soap

};

XML.previousSibling
my_xml.previousSibling

Read-only; an XMLNode value that references the previous sibling in the parent node’s child list. If the node does
not have a previous sibling node, the property has a value of null. This property cannot be used to manipulate child
nodes; use the XML.appendChild(), XML.insertBefore(), and XML.removeNode() methods instead.

Availability
Flash Media Server 2

Example
The following example is an excerpt from the example for the XML.lastChild property. It shows how you can use
the XML.previousSibling property to loop through an XMLNode object’s child nodes:

for (var aNode = rootNode.lastChild; aNode != null; aNode = aNode.previousSibling) {
trace(aNode);

}

XML.removeNode()
my_xml.removeNode()

Removes the specified XML object from its parent and deletes all descendants of the node.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

142

Availability
Flash Media Server 2

Example
The following example creates an XML packet and then deletes the specified XML object and its descendant nodes:

var xml_str = "<state name=\"California\"><city>San Francisco</city></state>";

var my_xml = new XML(xml_str);
var cityNode = my_xml.firstChild.firstChild;
trace("before XML.removeNode():\n"+my_xml);
cityNode.removeNode();
trace("after XML.removeNode():\n"+my_xml);

/* output (line breaks added for clarity):
before XML.removeNode():
<state name="California">
<city>San Francisco</city>
</state>

after XML.removeNode():
<state name="California" />
*/

XML.send()
my_xml.send(url, [fileObj])

Encodes the specified XML object into an XML document and sends it to the specified URL by using the POST
method in a browser. The Flash test environment uses only the GET method.

Availability
Flash Media Server 2

Returns
A boolean value; true if successful, otherwise, false.

Parameters
url A string; the destination URL for the specified XML object.

fileObj A File object, that is not read-only, to which the response is written. If the File object is not open, Flash
Media Interactive Server opens the file, writes to it, and closes it. If the File object is open, Flash Media Interactive
Server writes to the file and leaves it open. This parameter is optional.

Example
The following example defines an XML packet and sets the content type for the XML object. The data is then sent to
a server and the result is written in a File object.

var my_xml = new XML("<highscore><name>Ernie</name><score>13045</score></highscore>");
my_xml.contentType = "text/xml";
my_xml.send("http://www.flash-mx.com/mm/highscore.cfm", myFile);

XML.sendAndLoad()
my_xml.sendAndLoad(url, targetXMLobject)

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

143

Encodes the specified XML object into an XML document, sends it to the specified URL using the HTTP POST
method, downloads the server’s response, and loads it into the targetXMLobject object. The server response loads
the same as the response to the XML.load() method.

When sendAndLoad() is executed, the loaded property is set to false. When the XML data finishes loading
successfully, and the onLoad() event handler is invoked. The XML data is not parsed until it is completely
downloaded. If the XML object previously contained any XML trees, they are discarded.

Availability
Flash Media Server 2

Parameters
url A string; the destination URL for the specified XML object. If the SWF file issuing this call is running in a web
browser, url must be in the same domain as the SWF file.

targetXMLobject An XML object created with the XML constructor method that will receive the return infor-
mation from the server.

Returns
A boolean value; true if successful, otherwise, false.

XML.status
my_xml.status

A number indicating whether an XML document was successfully parsed into an XML object. The following table
contains the numeric status codes and their descriptions:

Availability
Flash Media Server 2

Example
The following example loads an XML packet into a SWF file. A status message indicates whether the XML is loaded
and parsed successfully.

var my_xml = new XML();

Status code Description

0 No error; parse was completed successfully.

-2 A CDATA section was not properly terminated.

-3 The XML declaration was not properly terminated.

-4 The DOCTYPE declaration was not properly terminated.

-5 A comment was not properly terminated.

-6 An XML element was malformed.

-7 Out of memory.

-8 An attribute value was not properly terminated.

-9 A start tag was not matched with an end tag.

-10 An end tag was encountered without a matching start tag.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

144

my_xml.onLoad = function(success) {
if (success) {

if (my_xml.status == 0) {
trace("XML was loaded and parsed successfully");

} else {
trace("XML was loaded successfully, but was unable to be parsed.");

}
var errorMessage;
switch (my_xml.status) {
case 0 :

errorMessage = "No error; parse was completed successfully.";
break;

case -2 :
errorMessage = "A CDATA section was not properly terminated.";
break;

case -3 :
errorMessage = "The XML declaration was not properly terminated.";
break;

case -4 :
errorMessage = "The DOCTYPE declaration was not properly terminated.";
break;

case -5 :
errorMessage = "A comment was not properly terminated.";
break;

case -6 :
errorMessage = "An XML element was malformed.";
break;

case -7 :
errorMessage = "Out of memory.";
break;

case -8 :
errorMessage = "An attribute value was not properly terminated.";
break;

case -9 :
errorMessage = "A start tag was not matched with an end tag.";
break;

case -10 :
errorMessage = "An end tag was encountered without a matching

start tag.";
break;

default :
errorMessage = "An unknown error has occurred.";
break;

}
trace("status: "+my_xml.status+" ("+errorMessage+")");

} else {
trace("Unable to load/parse XML. (status: "+my_xml.status+")");

}
};
my_xml.load("http://www.flash-mx.com/mm/badxml.xml");

XML.toString()
my_xml.toString()

Evaluates the specified XML object, constructs a textual representation of the XML structure, including the node,
children, and attributes, and returns the result as a string.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

145

For top-level XML objects (those created with the constructor), the XML.toString() method outputs the
document’s XML declaration (stored in the XML.xmlDecl property), followed by the document’s DOCTYPE decla-
ration (stored in the XML.docTypeDecl property), followed by the text representation of all XML nodes in the object.
If the XML.xmlDecl property is undefined, the XML declaration is not output. If the XML.docTypeDecl property
is undefined, the DOCTYPE declaration is not output.

Availability
Flash Media Server 2

Returns
A string.

Example
The following example of the XML.toString() method sends <h1>test</h1> to the log file:

var node = new XML("<h1>test</h1>");
trace(node.toString());

XML.xmlDecl
my_xml.xmlDecl

Specifies information about a document’s XML declaration. After the XML document is parsed into an XML object,
this property is set to the text of the document’s XML declaration. This property is set by using a string representation
of the XML declaration, not an XMLNode object. If no XML declaration is encountered during a parse operation,
the property is set to undefined.XML. The XML.toString() method outputs the contents of the XML.xmlDecl
property before any other text in the XML object. If the XML.xmlDecl property contains the undefined type, no
XML declaration is output.

Availability
Flash Media Server 2

Example
The following example loads an XML file and outputs information about the file:

var my_xml = new XML();
my_xml.ignoreWhite = true;
my_xml.onLoad = function(success){

if (success){
trace("xmlDecl: " + my_xml.xmlDecl);
trace("contentType: " + my_xml.contentType);
trace("docTypeDecl: " + my_xml.docTypeDecl);
trace("packet: " + my_xml.toString());

}
else {

trace("Unable to load remote XML.");
}

};
my_xml.load("http://foo.com/crossdomain.xml");

See also
XML.docTypeDecl, XML.toString()

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

146

XMLSocket class
The XMLSocket class implements client sockets that let Flash Media Interactive Server communicate with a server
identified by an IP address or domain name. The XMLSocket class is useful for client-server applications that require
low latency, such as real-time chat systems. A traditional HTTP-based chat solution polls the server frequently and
downloads new messages by using an HTTP request. In contrast, an XMLSocket chat solution maintains an open
connection to the server, which lets the server send incoming messages immediately, without a request from the
client.

Note: You can also use the XMLSocket class to create an XMLStreams object. See XMLSocket constructor and
XMLStreams class.

To use the XMLSocket class, the server computer must run a daemon that understands the protocol used by this
class. The protocol has the following characteristics:

• XML messages are sent over a full-duplex TCP/IP stream socket connection.

• Each XML message is a complete XML document, terminated by a zero (0) byte.

• An unlimited number of XML messages can be sent and received over a single XMLSocket connection.

The following restriction applies to how and where an XMLSocket object can connect to the server:

• The XMLSocket.connect() method can connect only to TCP port numbers greater than or equal to 1024. One
consequence of this restriction is that the server daemons that communicate with the XMLSocket object must also
be assigned to port numbers greater than or equal to 1024. Port numbers less than 1024 are often used by system
services such as FTP, Telnet, and HTTP, which prohibits XMLSocket objects from these ports for security reasons.
The port number restriction limits the possibility that these resources can be inappropriately accessed and abused.

To use the methods of the XMLSocket class, you must first use the constructor, new XMLSocket(), to create an
XMLSocket object.

Availability
Flash Media Server 2

Property summary

Method summary

Property Description

XMLSocket.maxUnprocessedChars The number of characters the connection can receive from the XML server without receiving
an end tag or the XMLSocket connection closes.

Method Description

XMLSocket.close() Closes the connection specified by the XMLSocket object.

XMLSocket.connect() Establishes a connection to the specified Internet host by using the specified TCP port (must
be 1024 or higher), and returns true or false, depending on whether a connection is
successfully established.

XMLSocket.send() Converts the XML object or data specified in the object parameter to a string and transmits
it to the server, followed by a zero (0) byte.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

147

Event handler summary

XMLSocket constructor
new XMLSocket(streamOrFlash)

Creates a new XMLSocket object ("flash") or a new XMLStreams object ("stream"). The XMLSocket and
XMLStreams objects are not initially connected to any server. You must call XMLSocket.connect() to connect the
object to a server.

For more information about the XMLStreams class, see XMLStreams class.

Availability
Flash Communication Server 1.5

Parameters
streamOrFlash A string indicating whether this object is an XMLSocket object or an XMLStreams object. This
parameter can have one of the following two values: "flash" or "stream".

Returns
A reference to an XMLSocket object or an XMLStreams object.

Example
The following example creates an XMLSocket object:

var socket = new XMLSocket("flash");

The following example creates an XMLStreams object:

var stream = new XMLSocket("stream");

XMLSocket.close()
myXMLSocket.close()

Closes the connection specified by the XMLSocket object.

Availability
Flash Media Server 2

Example
The following simple example creates an XMLSocket object, attempts to connect to the server, and then closes the
connection:

var socket = new XMLSocket();
socket.connect(null, 2000);

Event handler Description

XMLSocket.onClose() Invoked when an open connection is closed by the server.

XMLSocket.onConnect() Invoked by Flash Media Interactive Server when a connection request initiated through
XMLSocket.connect() succeeds or fails.

XMLSocket.onData() Invoked when a message has been downloaded from the server, terminated by a zero (0) byte.

XMLSocket.onXML() Invoked when the specified XML object containing an XML document arrives through an open
XMLSocket connection.

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

148

socket.close();

XMLSocket.connect()
myXMLSocket.connect(host, port)

Establishes a connection to the specified Internet host by using the specified TCP port (must be 1024 or higher), and
returns true or false, depending on whether a connection is successfully established. If you don’t know the port
number of the Internet host computer, contact your network administrator.

If you specify null for the host parameter, the local host is contacted.

The Server-Side ActionScript XMLSocket.connect() method can connect to computers that are not in the same
domain as the SWF file.

If XMLSocket.connect() returns a value of true, the initial stage of the connection process is successful. Later, the
XMLSocket.onConnect() handler is invoked to determine whether the final connection succeeded or failed. If
XMLSocket.connect() returns false, a connection could not be established.

Availability
Flash Media Server 2

Parameters
host A string; a fully qualified DNS domain name or an IP address. Specify null to connect to the local host. Do
not enclose IPv6 addresses in square brackets.

port A number; the TCP port number on the host used to establish a connection. The port number must be 1024
or higher.

Returns
A boolean value; true if successful, otherwise, false.

Example
The following example uses XMLSocket.connect() to connect to the local host:

var socket = new XMLSocket()
socket.onConnect = function (success) {

if (success) {
trace ("Connection succeeded!")

} else {
trace ("Connection failed!")

}
};
if (!socket.connect(null, 2000)) {

trace ("Connection failed!")
}

Note: Server-side trace() statements are output to the application log file and to the Live Log panel in the Adminis-
tration Console.

XMLSocket.maxUnprocessedChars
myXMLSocket.maxUnprocessedChars

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

149

The number of characters the connection can receive from the XML server without receiving an end tag or the
XMLSocket connection closes. The value of XMLSocket.maxUnprocessedChars can be -1 or any value greater than
0. The value -1 means that an unlimited amount of data can be processed. However, the value of
maxUnprocessedChars cannot exceed the value specified in the Application.xml file. The default value in the Appli-
cation.xml file is 4096 bytes.

Setting this property in a server-side script overrides the value of the MaxUnprocessedChars element in the Appli-
cation.xml file for each XMLSocket object. If the property is not set in a server-side script, the server uses the value
set in the MaxUnprocessedChars element of the Application.xml file.

Availability
Flash Media Interactive Server

XMLSocket.onClose()
myXMLSocket.onClose = function() {}

Invoked when an open connection is closed by the server. The default implementation of this method performs no
actions. To override the default implementation, you must assign a function containing custom actions.

Availability
Flash Media Server 2

Example
The following example executes a trace() statement if an open connection is closed by the server:

var socket = new XMLSocket();
socket.connect(null, 2000);
socket.onClose = function () {

trace("Connection to server lost.");
}

Note: Server-side trace() statements are output to the application log file and to the Live Log panel in the Adminis-
tration Console.

XMLSocket.onConnect()
myXMLSocket.onConnect = function(success) {}

Invoked by Flash Media Interactive Server when a connection request initiated through XMLSocket.connect()
succeeds or fails. If the connection succeeded, the success parameter is true; otherwise, false.

The default implementation of this method performs no actions. To override the default implementation, you must
assign a function containing custom actions.

Availability
Flash Media Server 2

Parameters
success A boolean value indicating whether a socket connection is successfully established (true or false).

Example
The following example defines a function for the onConnect() handler:

socket = new XMLSocket();

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

150

socket.onConnect = myOnConnect;

socket.connect(null,2000);

function myOnConnect(success) {
if (success) {

trace("Connection success")
} else {

trace("Connection failed")
}

}

XMLSocket.onData()
myXMLSocket.onData = function(src) {}

Invoked when a message has been downloaded from the server, terminated by a zero (0) byte. You can override
XMLSocket.onData() to intercept the data sent by the server without parsing it as XML. This is useful if you’re
transmitting arbitrarily formatted data packets and you would prefer to manipulate the data directly when it arrives,
rather than have Flash Media Interactive Server parse the data as XML.

By default, the XMLSocket.onData() method invokes the XMLSocket.onXML() method. If you override
XMLSocket.onData() with custom behavior, XMLSocket.onXML() is not called unless you call it in your imple-
mentation of XMLSocket.onData().

Availability
Flash Media Server 2

Parameters
src A string containing the data sent by the server.

Example
In the following example, the src parameter is a string containing XML text downloaded from the server. The zero-
byte (0) terminator is not included in the string.

XMLSocket.prototype.onData = function (src) {
this.onXML(new XML(src));

}

XMLSocket.onXML()
myXMLSocket.onXML = function(object) {}

Invoked when the specified XML object containing an XML document arrives through an open XMLSocket
connection. An XMLSocket connection can be used to transfer an unlimited number of XML documents between
the client and the server. Each document is terminated with a zero (0) byte. When Flash Media Interactive Server
receives the zero byte, it parses all of the XML received since the previous zero byte or, if this is the first message
received, since the connection was established. Each batch of parsed XML is treated as a single XML document and
passed to the onXML() handler.

The default implementation of this method performs no actions. To override the default implementation, you must
assign a function containing actions that you define.

Availability
Flash Media Server 2

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

151

Parameters
object An XML object that contains a parsed XML document received from a server.

Example
The following function overrides the default implementation of the onXML() method in a simple chat application.
The myOnXML() function instructs the chat application to recognize a single XML element, MESSAGE, in the following
format:

<MESSAGE USER="John" TEXT="Hello, my name is John!" />.
var socket = new XMLSocket();

The following displayMessage() function is assumed to be a user-defined function that shows the message that
the user receives:

socket.onXML = function (doc) {
var e = doc.firstChild;
if (e != null && e.nodeName == "MESSAGE") {

displayMessage(e.attributes.user, e.attributes.text);
}

};

XMLSocket.send()
myXMLSocket.send(object)

Converts the XML object or data specified in the object parameter to a string and transmits it to the server, followed
by a zero (0) byte. If object is an XML object, the string is the XML textual representation of the XML object.

If the myXMLSocket object is not connected to the server (by using XMLSocket.connect()), the
XMLSocket.send() operation fails.

Availability
Flash Media Server 2

Parameters
object An XML object or other data to transmit to the server.

Returns
A boolean value; true if the server is able to get the socket and the socket state is connected; otherwise, false. A
true value does not mean that the data has been transmitted successfully. The send() method is asynchronous; it
returns a value immediately, but the data may be transmitted later.

Example
The following example shows how you can specify a user name and password to send the XML object my_xml to the
server:

var myXMLSocket = new XMLSocket();
var my_xml = new XML();
var myLogin = my_xml.createElement("login");
myLogin.attributes.username = usernameTextField;
myLogin.attributes.password = passwordTextField;
my_xml.appendChild(myLogin);
myXMLSocket.send(my_xml);

See also
XMLSocket.connect()

ADOBE FLASH MEDIA INTERACTIVE SERVER
Server-Side ActionScript Language Reference

152

XMLStreams class
The XMLStreams class is a variation of the XMLSocket class—it has all the same methods, properties, and events,
but it transmits and receives data in fragments. To create an XMLStreams object, use the XMLSocket constructor
and pass "stream" as the parameter. See XMLSocket constructor.

Flash Media Interactive Server can transmit XML data in stream format (for example, as needed by a Jabber server
or IM applications). Streaming XML data passes over a normal XMLSocket connection, but it begins with a
stream:stream tag, contains fragments of XML content, and concludes with a /stream:stream closing tag.

The onData() handler is invoked and returns complete XML tags whenever it receives them. The /stream:stream
tag closes the stream. There is an asynchronous call to onData() whenever a complete tag has been received by the
stream.

Note: As a security precaution, if 4096 bytes of data arrive before a closing XML tag, the socket connection closes. This
value is configurable in the XMLSocket.maxUnprocessedChars property or in the MaxUnprocessedChars element
in the Application.xml file.

Availability
Flash Media Server 2

Example
If you want your Flash Media Server application to communicate with a Jabber server, which uses XML streaming,
create an XMLStreams object. The XMLStreams object connects to a remote XML streaming server, and the
onData() handler is called as complete sections of XML occur in the stream.

myXMLStreams = new XMLSocket("stream");

http://www.jabber.org/

	Contents
	Server-Side ActionScript Language Reference
	Global functions
	clearInterval()
	getGlobal()
	load()
	protectObject()
	setAttributes()
	setInterval()
	trace()

	Application class
	application.acceptConnection()
	application.allowDebug
	application.broadcastMsg()
	application.clearSharedObjects()
	application.clearStreams()
	application.clients
	application.config
	application.disconnect()
	application.gc()
	application.getStats()
	application.hostname
	application.name
	application.onAppStart()
	application.onAppStop()
	application.onConnect()
	application.onConnectAccept()
	application.onConnectReject()
	application.onDisconnect()
	application.onPublish()
	application.onStatus()
	application.onUnpublish()
	application.redirectConnection()
	application.registerClass()
	application.registerProxy()
	application.rejectConnection()
	application.server
	application.shutdown()

	Client class
	Client.agent
	Client.audioSampleAccess
	Client.call()
	Client.checkBandwidth()
	Client.getBandwidthLimit()
	Client.getStats()
	Client.getStreamLength()
	Client.id
	Client.ip
	Client.pageUrl
	Client.ping()
	Client.protocol
	Client.readAccess
	Client.referrer
	Client.remoteMethod()
	Client.__resolve()
	Client.secure
	Client.setBandwidthLimit()
	Client.uri
	Client.videoSampleAccess
	Client.virtualKey
	Client.writeAccess

	File class
	File constructor
	File.canAppend
	File.canRead
	File.canReplace
	File.canWrite
	File.close()
	File.copyTo()
	File.creationTime
	File.eof()
	File.exists
	File.flush()
	File.isDirectory
	File.isFile
	File.isOpen
	File.lastModified
	File.length
	File.list()
	File.mkdir()
	File.mode
	File.name
	File.open()
	File.position
	File.read()
	File.readAll()
	File.readByte()
	File.readln()
	File.remove()
	File.renameTo()
	File.seek()
	File.toString()
	File.type
	File.write()
	File.writeAll()
	File.writeByte()
	File.writeln()

	LoadVars class
	LoadVars constructor
	LoadVars.addRequestHeader()
	LoadVars.contentType
	LoadVars.decode()
	LoadVars.getBytesLoaded()
	LoadVars.getBytesTotal()
	LoadVars.load()
	LoadVars.loaded
	LoadVars.onData()
	LoadVars.onHTTPStatus()
	LoadVars.onLoad()
	LoadVars.send()
	LoadVars.sendAndLoad()
	LoadVars.toString()

	Log class
	Log constructor
	Log.onLog()

	NetConnection class
	NetConnection constructor
	NetConnection.addHeader()
	NetConnection.call()
	NetConnection.close()
	NetConnection.connect()
	NetConnection.isConnected
	NetConnection.objectEncoding
	NetConnection.onStatus()
	NetConnection.uri

	NetStream class
	NetStream class constructor
	NetStream.attach()
	NetStream.bufferTime
	NetStream.onStatus()
	NetStream.publish()
	NetStream.send()
	NetStream.setBufferTime()
	NetStream.time

	SharedObject class
	SharedObject.autoCommit
	SharedObject.clear()
	SharedObject.close()
	SharedObject.commit()
	SharedObject.flush()
	SharedObject.get()
	SharedObject.getProperty()
	SharedObject.getPropertyNames()
	SharedObject.handlerName()
	SharedObject.isDirty
	SharedObject.lock()
	SharedObject.mark()
	SharedObject.name
	SharedObject.onStatus()
	SharedObject.onSync()
	SharedObject.purge()
	SharedObject.resyncDepth
	SharedObject.send()
	SharedObject.setProperty()
	SharedObject.size()
	SharedObject.unlock()
	SharedObject.version

	SOAPCall class
	SOAPCall.onFault()
	SOAPCall.onResult()
	SOAPCall.request
	SOAPCall.response

	SOAPFault class
	SOAPFault.detail
	SOAPFault.faultactor
	SOAPFault.faultcode
	SOAPFault.faultstring

	Stream class
	Stream.bufferTime
	Stream.clear()
	Stream.flush()
	Stream.get()
	Stream.getOnMetaData()
	Stream.length()
	Stream.name
	Stream.onStatus()
	Stream.play()
	Stream.record()
	Stream.send()
	Stream.setBufferTime()
	Stream.setVirtualPath()
	Stream.size()
	Stream.syncWrite

	WebService class
	WebService constructor
	WebService.onFault()
	WebService.onLoad()

	XML class
	XML constructor
	XML.addRequestHeader()
	XML.appendChild()
	XML.attributes
	XML.childNodes
	XML.cloneNode()
	XML.contentType
	XML.createElement()
	XML.createTextNode()
	XML.docTypeDecl
	XML.firstChild
	XML.getBytesLoaded()
	XML.getBytesTotal()
	XML.getNamespaceForPrefix()
	XML.getPrefixForNamespace()
	XML.hasChildNodes()
	XML.ignoreWhite
	XML.insertBefore()
	XML.lastChild
	XML.load()
	XML.loaded
	XML.localName
	XML.namespaceURI
	XML.nextSibling
	XML.nodeName
	XML.nodeType
	XML.nodeValue
	XML.onData()
	XML.onHTTPStatus()
	XML.onLoad()
	XML.parentNode
	XML.parseXML()
	XML.prefix
	XML.previousSibling
	XML.removeNode()
	XML.send()
	XML.sendAndLoad()
	XML.status
	XML.toString()
	XML.xmlDecl

	XMLSocket class
	XMLSocket constructor
	XMLSocket.close()
	XMLSocket.connect()
	XMLSocket.maxUnprocessedChars
	XMLSocket.onClose()
	XMLSocket.onConnect()
	XMLSocket.onData()
	XMLSocket.onXML()
	XMLSocket.send()

	XMLStreams class

